
Exception handling in the 68000, Part 1
Motorola's 68000 is an example of a microprocessor with sophisticated exception

handling facilities. In the first of two tutorial papers, Alan Clements presents an
overview of the 68000's exceptions and interrupts

The paper gives an overview of the implementation of
exception handling in the 68000 microprocessor, starting
with an introductory discussion of interrupts. The different
types of interrupt are outlined. This is followed by a
discussion of privileged states on the 68000. The types of
exception supported by the 68000 are described, as are the
use and maintenance of the exception vector table. Finally,
the response of the 68000 CPU to an exception is covered.

microprocessors exceptions interrupts 68000

This two-part paper examines how the 68000 16-bit
microprocessor implements exception handling.

Most of the first- and second-generation 8-bit micro-
processors had rather primitive exception handling
facilities consisting of little more than one or two interrupt
request inputs and some form of software interrupt.
Modern high-performance microprocessors have very
sophisticated exception handling mechanisms and can
deal with multilevel, prioritized, vectored interrupts
together with a wide range of software traps and operating
system calls. The paper begins with a brief look at
interrupts, which are a special case of the more general
exception processing capability of a computer. Part 2 of
the paper shows in detail how the 68000 handles
interrupts.

INTERRUPTS

A computer executes the instructions of a program
sequentially unless a jump or conditional branch modifies
their order, or unless a subroutine is called. In such
cases, any deviation from the sequential execution of
instructions is determined by the programmer. Deviations
caused by conditional branches or subroutines are said
to be synchronous, because they occur at predetermined
points in the program. Under certain circumstances this
arrangement is very. inefficient.

Suppose a microprocessor is reading data from a
keyboard at an average rate of 250 characters per minute,
corresponding to approximately four characters per
second. In a 68000 system, the processor reads the status
of a memory-mapped peripheral to determine whether or
not a key has been pressed. If no key has been pressed, a
branch is made back to the instruction which reads the

Department of Computer Science, Teesside Polytechnic, Middlesbrough,
Cleveland TSI 3BA, UK

0141-9331/86/04202-09 $03.00 ©

202

status of the peripheral, and the cycle continues until a
key is pressed. The following program shows how this is
done.

KEY _STATUS EQU $F00000 (Lo{ation of input statu_,,
word)

KEY_ VALUE EQU KEY__STATUS -e ,: (Location of input data
w~rd)

LEA.L KEY~TATUS, AO {AO points to Key status}
LEA.L KEY_VALUE, A1 (AI points to Key value)

TEST LOOP BTST.B #0, (AO) (Test status, ie least
significant bit)

BEQ lESt __LOOP (Repeat while l{odst
qgnificant bit clear)

MOVE.B {A1), I) ~ (Read the data)

The two instructions BTST.B #0, (A0} and BEQ TEST_LOOP
constitute a 'polling loop', which is executed until the
least significant bit of the status word is true, signifying that
the data from the keyboard is valid. These two instructions
take 20 clock cycles to execute on the 68000, requiring
2 ps with a 10 MHz clock. Thus, for each key pressed, the
polling loop is executed approximately 100 000 times!
Quite clearly, this is a grossly inefficient use of CPU t ime

In some applications, the time wasted in executing a
polling loop is of little significance. If an operator is sitting
at the keyboard of a personal computer thinking about the
next word to enter, for example, it is of no consequence
that the CPU is asking the keyboard if it has a new
character every 2 lus or so. In more sophisticated applica-
tions, the CPU cannot be allowed to waste time executing
polling loops. There may be a queue of programs waiting
to be run or some peripheral needing continual attention
while another program is being run, or there may be a
background task and a foreground task.

A technique for dealing more effectively with I/O
transactions has been implemented on all micro-
processors: it is called an interrupt handling mechanism.
An interrupt request line, IRQ, is connected between the
peripheral and the CPU. Whenever the peripheral is ready
to take part in an I/O operation, it asserts the IRQ line and
invites the CPU to deal with the transaction. The CPU is
free to carry out background tasks between interrupt
requests from the peripheral.

An interrupt is clearly an asynchronous event, because
the processor cannot know at which instant a peripheral
such as a keyboard will generate an interrupt. In other
words, the activity generating the interrupt bears no
particular timing relationship to the activity that the
computer is carrying out between interrupts. When an
interrupt occurs, the computer first decides whether to
deal with it (ie to se~,ice it), or whether to ignore it for the
time being. If the computer is doing something which

1986 Butterworth & Co. (Publishers) L~(i

micropr{< ~,.',rs anti microsysten>

must be completed within a given time, it ignores
interrupts. Should the computer decide to respond to the
interrupt, it must carry out the following sequence of
actions.

(1) Complete its current instruction. All instructions are
indivisible, which means they must be executed to
completion. A more sophisticated architecture might
allow the temporary suspension of an instruction.

(2) The contents of the program counter must be saved
in a safe place, so that the program can continue from
the point at which it was interrupted after the
interrupt has been serviced. The program counter is
invariably saved on the stack so that interrupts can,
themselves, be interrupted without losing their return
addresses.

(3) The state of the processor is saved on the stack.
Clearly, it would be unwise to allow the interrupt
service routine to modify, say, the value of the carry
flag, so that an interrupt occurring before a BCC
instruction would affect the operation of the BCC
after the interrupt had been serviced. In general, the
servicing of an interrupt should have no effect
whatsoever on the execution of the interrupted
program. (This statement is qualified below in dealing
with software interrupts, which are a special type of
synchronous event.)

(4) A jump is then made to the location of the interrupt
handling routine, which is executed like any other
program. After this routine has been executed, a
return from interrupt is made, the program counter
restored, and the system status word returned to its
pre-interrupt value.

Before examining the way in which the 68000 deals with
interrupts, it is worthwhile considering some of the key
concepts emerging from any discussion of interrupts.

Nonmaskable interrupts

An interrupt request is so called because it is a request,
and therefore carries the implication that it may be
denied or deferred. Whenever an interrupt request is
deferred, it is said to be masked. Sometimes it is necessary
for the computer to respond to an interrupt no matter
what it is doing. Most microprocessors have a special
interrupt request input called a 'nonmaskable interrupt
input' (NMI). Such an interrupt cannot be deferred and
must always be serviced.

Nonmaskable interrupts are normally reserved for
events such as loss of power. In this case, a low voltage
detector generates a nonmaskable interrupt as soon as
the power begins to decay. This forces the processor to
deal with the interrupt and perform an orderly shutdown
of the system before the power drops below a critical
level and the computer fails completely. The 68000 has a
single (level 7) nonmaskable interrupt request.

Prioritized interrupts

In an environment where more than one device is able to
issue an interrupt request, it is necessary to provide a

mechanism to distinguish between an important interrupt
and a less important one. For example, if a disc drive
controller generates an interrupt because it has some data
ready to be read by the processor, the interrupt must be
serviced before the data is lost and replaced by new data
from the disc drive. On the other hand, an interrupt
generated by a keyboard interface probably has from
250 ms to several seconds before it must be serviced.
Therefore an interrupt from a keyboard can be deferred if
interrupts from devices requiring urgent attention are
pending.

For the above reasons, microprocessors are often
provided with prioritized interrupts. Each interrupt has a
predefined priority, and a new interrupt with a priority
lower than or equal to the current one cannot interrupt
the processor until the current interrupt has been dealt
with. Equally, an interrupt with a higher priority can
interrupt the current interrupt. The 68000 provides seven
levels of interrupt priority.

Vectored interrupts

A vectored interrupt is one in which the device requesting
the interrupt automatically identifies itself to the processor.
Some 8-bit microprocessors lack a vectored interrupt
facility and have only a single interrupt request input
(IRQ*). When IRQ* is asserted, the processor recognizes
an interrupt but not its source. This means that the
processor must examine, in turn, each of the peripherals
that may have initiated the interrupt. To do this, the
interrupt handling routine interrogates a status bit
associated with each of the peripherals.

More sophisticated processors have an interrupt
acknowledge output line, lACK, which is connected to all
peripherals. Whenever the CPU has accepted an interrupt
and is about to service it, the CPU asserts its interrupt
acknowledge output. An interrupt acknowledge from the
CPU informs the peripheral that its interrupt is about to be
serviced. The peripheral then generates an 'identification
number' which it puts on the data bus, allowing the
processor to calculate the address of the interrupt
handling routine appropriate to the peripheral. This is
called a vectored interrupt. The 68000 provides the
designer with both vectored and nonvectored interrupt
facilities.

PRIVILEGED STATES AND THE 68000

Having introduced the interrupt the next step is to look at
how the 68000 handles exceptions, which are a more
general form of interrupt.

The 68000 is an unusual processor because it always
operates in one of two states: either supervisor state or
user state. User and supervisor states are only relevant to
multitasking systems in which several user tasks are run
under control of the operating system. By executing the
operating system in the supervisor mode and the user
tasks in the user mode, it becomes relatively easy to

vol 10 no 4 may 1986 203

Sea@]£og.s

prevent one user task from accessing the memory space
of another task or of the operating system.

The supervisor state is the higher state of privilege and
is in force whenever the S bit of the status register is true.
All the 68000's instructions can be executed while the
processor is in this state. The user state is the lower state of
privilege, and certain instructions cannot be executed in
this state. Each of the two states has its own stack pointer,
so that the 68000 has two A7 registers. The user-mode A7
is called the user stack pointer (USP) and the supervisor-
mode A7 is called the supervisor stack pointer (SSP). Note
that the SSP cannot be accessed from the user state,
whereas the USP can be accessed in the supervisor state
by means of the instructions MOVE USP,An and
MOVE An,USP. Figure 1 shows the register arrangements
of the 68000. The program counter, status register, data
registers and address registers A0-A6 are common to both
operating modes. Only A7 is duplicated.

All exception processing is carried out in the supervisor
state, because an exception forces a change from user to
supervisor state. Indeed, the only way of entering the
supervisor state is by means of an exception. Figure 1
shows how a transition is made between the 68000's two
states. Note that an exception causes the S bit in the
68000's status register to be set and the supervisor stack
pointer to be selected at the start of the exception, with
the result that the return address is saved on the supervisor
stack and not on the user stack. The 68000 puts out a
function code on its three function code pins, FC0-FC2,
which informs any external memory management unit
whether the CPU is accessing user or supervisory memory
space. This enables the memory management unit to

Any exception

Clear S bit

I User stack pointer A7] I SuperviSOrpointer A7Stack I
4

32 bit I Status byte]

32 bit

DO
D1

D7
A0
A1

A6
Register set
common to both PC
operating modes [CCR

Figure 1. State diagram of user and supervisor state
transitions

protect the supervisor's memory space from any illegal
access by user programs.

The change from supervisor to user state is made by
clearing the S bit of the status register. This change is
carried out by the operating system when it wishes to run
a user program. Four instructions are available for this op-
eration: RTE; MOVE.W < ea >, SR; ANDI.W #$XXXX, SR;
and EORI.W #$XXXX, SR. The #$XXXX represents a 16-
bit literal value in hexadecimal form. The RTE (return from
exception) instruction terminates an exception handling
routine and restores the value of the program counter and
the old status register stored on the stack before the
current exception was processed~ Consequently, if the
68000 were in the user state before the current exception
forced it into the supervisor state, an RTE would restore
the processor to its old (ie user) state.

In the user state, the programmer must not attempt to
execute certain instructions. For example, the STOP and
RESET instructions are not available to the programmer,
because the RESET instruction forces the RESET* output of
the 68000 low and resets any peripherals connected to
this pin. Some of these peripherals may be in use by
another program. The whole philosophy behind user and
supervisor states is to prevent this type of thing from
happening. Similarly, a STOP instruction has the effect of
haltingthe processor until certain conditions are met, and
is not allowed in the user state because a user program
should not be allowed to bring the entire system to a
standstill.

Any instructions affecting the S bit in the upper byte of
the status register (ie RTE; MOVE.W < ea>,SR;
ANDI.W #$XXXX,SR; ORI.W #$XXXX,SR; EORI.W #$XXXX,SR)
are also not permitted in the user mode. Note that no
instruction that performs useful computation is barred
from the user mode. Only certain system operations are
privileged.

Suppose a programmer tries to set the S bit by
executing an ORI.W#$2OO0,SR; obviously, there is
nothing to stop him/her from writing the instruction and
running the program containing it. When the program is
run, the illegal operation violates the user privilege by
trying to enter the supervisor mode and forces an
exception to be generated. This causes a change of state
from user to supervisor, ie the 'punishment' for trying to
enter the supervisor state is to be forced into it.

In fact, the effect of attempting to execute an
ORI.W #$2000,SR is to raise a software exception called a
privilege violation, forcing a jump to a specific routine
dealing with this type of exception. (The way in which
exception states are entered and processed is dealt with
below.) Once the exception handling routine dealing with
the privilege violation has been entered, the user no
longer controls the processor. The operating system has
now taken over and it is highly probable that the
exception handling routine will deal with the privilege
violation by terminating the user's program.

EXCEPTION TYPES

There are a number of different exception types supported
by the 68000, some of which are associated with external

204 microprocessors and microsystem5

hardware events such as interrupts, and some of which are
associated with internally generated events such as
privilege violations. Below is a list of the exception types
currently implemented. The way in which these excep-
tions are implemented is described later.

Reset

An externally generated reset is caused by bringing the
RESET* and HALT* pins low for 10 clock pulses (or 100 ms
on power up), and is used to place the 68000 in a known
state at start up or following a totally irrecoverable system
collapse. The reset is a unique exception, because there is
no 'return from exception' following a reset.

Bus error

A bus error is an externally generated exception, initiated
by hardware drivingthe 68000's BERR* pin active low. It is
a 'catch-all' exception, because the systems designer may
use it in many different ways, and it is provided to enable
the processor to deal with hardware faults in the system. A
typical use of the BERR* input is to indicate either a faulty
memory access or an access to a nonexistent memory.

Interrupt

The 68000 has three interrupt request inputs, IPL0-1PL2,
which are encoded and indicate one of seven levels of
interrupt. To obtain maximum benefit from the interrupt
request inputs, it is necessary to apply an eight-line to
three-line priority encoder to convert one of seven
interrupt request inputs from peripherals into a 3-bit
code. The eighth code represents no interrupt request.

Address error

An address error exception occurs when the processor
attempts to read a 16-bit word or a 32-bit Iongword at an
odd address. Attempting to read a word at an odd address
would require two accesses to memory - - one to access
the odd byte of an operand and the other to access the
even byte at the next address. Address error exceptions
are generated when the programmer makes a mistake.
Consider the following fragment of code

MOVEA.L #$7000,A0 (Load A0 with $00 7000)
MOVE.B (A0) +,DO (Load DO with the byte pointed at by A0, and

increment A0 by 1)
MOVE.W (A0) +,DO (Load DO with the word pointed at by AO, and

increment A0 by 2)

The third instruction results in an address error because
the previous operation, MOVE.B (A0) + DO, causes the
value in A0 to be incremented from $7000 to $7001.
Therefore when the processor attempts to execute
MOVE.W (A0) +, DO it finds it is trying to access a word at
an odd address. In many ways, an address error is closer to

an exception generated by an event originating in the
hardware than to one originating in the software. The bus
cycle that leads to the address error is aborted, as the
processor cannot complete the operation.

Illegal instruction

In 8-bit microprocessors, it was an intriguing diversion to
find out what effect 'unimplemented' op. codes had on
the processor. For example, if the value $A5 did not
correspond to a valid op. code, an enthusiast would try
and execute it and then see what happened. This was
possible because the control unit (ie the instruction
interpreter) of most 8-bit microprocessors was imple-
mented by random logic.

To reduce the number of gates in the control unit of the
CPU, some manufacturers have not attempted to deal
with illegal op. codes; after all, these are not supposed to
be executed. In keeping with the 68000's approach to
programming, an exception is generated whenever an
operation code is read that does correspond to the bit
pattern of the first word of one of the 68000's legal
instructions.

Divide by zero

If a number is divided by zero, the result is meaningless
and often indicates that something has gone seriously
wrong with the program attempting to carry out the
division. For this reason, the designers of the 68000
decided to make any attempt to divide a number by zero
an exception generating event. Good programs never try
to divide a number by zero, so the divide-by-zero
exception should not arise; it is intended merely as a
failsafe device, to avoid the meaningless result that would
occur if a number was divided by zero.

CHK instruction

The 'check register against bounds' instruction (CH K) has
the assembly language form CHK < ea >,Dn, and has the
effect of comparing the content of the specified data
register with the operand at the effective address. If the
lower-order word in the register, Dn, is negative, or is
greater than the upper bound at the effective address, an
exception is generated. For example, when the instruction
CHK D1,D0 is executed, an exception is generated if

[D0(0: 15)] < 0

or

[D0(0:15)] > [D1 (0:15)]

The CHK instruction works only with 16-bit words, and
therefore cannot be used with an address register as an
effective address. The CHK exception has been included
to help compiler writers for languages such as PASCAL
which have facilities for the automatic checking of array
indexes against their bounds.

vol 10 no 4 may 1986 205

TRAPV instruction

When the 'trap on overflow' instruction (TRAPV) is
executed, an exception occurs if the overflow bit, V, o~
the condition code register is set. Note that an exception
caused by dividing a number by zero occurs auto--
matically, while TRAPV is an instruction equivalent to:
IF V = 1 THEN exception ELSE continue.

Privilege violation

If the processor is in the user state (ie the S bit of the status
register is clear) and it attempts to execute a privileged
instruction, a privilege violation exception occurs. Apart
from any instruction that attempts to modify the state of
the S bit, the following three instructions cannot be
executed in the user state: STOP; RESET;
MOVE < ea >,SR.

Trace

A popular method of debugging a program is to operate in
a trace mode, in which the contents of all registers are
printed out after each instruction has been executed. The
68000 has an inbuilt trace facility. If the T bit of the status
register is set, a trace exception is generated after each
instruction has been executed. The exception handling
routine called by the trace exception can be constructed
to offer programmers any facilities they need.

Line 1010 emulator

Operation codes whose four most significant bits (bits 12-
15) are 1010 or 1111 are unimplemented in the 68000,
and therefore represent illegal instructions. However, the
68000 generates a special exception for op. codes whose
most significant nibble is 1010 (also called line ten). The
purpose of this exception is to emulate instructions on
future versions of the 68000. Suppose a version of the
68000 is designed which includes floating point operations
as well as the normal 68000 instruction set. Clearly, it is
impossible to run code intended for the floating point
processor on a normal 68000. But by using 1010 as the
four most significant bits of each of the new floating point
instructions, an exception is generated each time the
68000 encounters one, and the line 1010 exception can
emulate its more sophisticated counterpart.

Line 1111 emulator

The line 1111 (or line F) emulator behaves in almost
exactly the same way as the line 1010 emulator, except
that it has a different exception handling routine.

Uninitialized interrupt vector

The 68000 supports vectored interrupts, so that an

interrupting device can identify itseif and allow the 08000
to execute the appropriate interrupt handling routin~:.
without havingto poll each device in turn. Before a devic(
(:an identify itself, it must first be correctly configured b,~ ~
the programmer. If a 68000 series device is unconfigured
and yet generates an interrupt, the 68000 responds b~
raising an 'uninitiated interrupt vector' exception. 68000
series peripherals are designed to supply the initialize(!
interrupt vector n umber ($0F) during an IACK cycle, if the~,
have not been initialized by software.

Spurious interrupt

If the 68000 receives an interrupt request and sends an
interrupt acknowledge, but no device responds, the CPL;
generates a spurious interrupt exception. To implement
the spurious interrupt exception, external hardware is
required to assert BERR* following the nonappearance el
either DTACK* or VPA* a reasonable time after an interrupt
acknowledge has been detected.

TRAP (software interrupt)

l-he 68000 provides sixteen instructions of the form
TRAP #I, where I = 0, I 15. When this instruction is
executed an exception is generated and one of sixteen
exception handling routines called. Thus TRAP#0
causes TRAP exception handling routine 0 to be called,
and so on.

The TRAP instruction is very useful. Suppose a program
is written which is to run all 68000 systems. The greatest
problem comes in dealing with input or output trans-
actions. One 68000 system may deal with input in a very
different way to every other 68000 system. However, if
everybody agrees that, say TRAP #0 means input a byte
and TRAP #I means output a byte, then the software
becomes truly portable. All that remains to be done is for
an exception handler to be written for each 68000 system
to actually implement the input or output as necessa~.

EXCEPTION VECTORS

Having described the various types of exception supported
by the 68000, the next step is to explain how the
processor is able to determine the location of the
corresponding exception handling routine. Every
exception has a vector associated with it, and that vector
is the 32-bit absolute address of the appropriate exception
handling routine. All exception vectors are stored in a
table of 512 words, extending from address $00 0000 to
$00 03FF.

A list of all the exception vectors is given in Table 1, and
Figure 2 shows the physical location of the 512 vectors in
memory. The left-hand column of Table 1 gives the vector
number of each entry in the table. The vector number is a
value which, when multiplied by four, gives the address,
or offset, of an exception vector. For example, the vector
number corresponding to a privilege violation is 8, and the

206 mi(roproce,;~,:~ and microsvstems

Table 1. Exception vectors and the 68000

Vector Vector Address Exception type
number (hex) space

0 000 SP

1 004 SP

2 008 SD
3 00C SD
4 010 SD
5 014 SD
6 018 SD
7 01C SD
8 020 SD
9 024 SD

10 028 SD
11 02C SD
12 030 SD
13 034 SD
14 038 SD
15 03C SD
16 040 SD

23 05C SD
24 060 SD
25 064 SD
26 068 SD
27 06C SD
28 070 SD
29 074 SD
30 078 SD
31 07C SD
32 080 SD
33 084 SD

47 0BC SD
48 0C0 SD

63 0FC SD
64 100 SD

255 3FC SD

R e s e t - initial supervisor
stack pointer
Reset - - initial program
counter value
Bus error
Address error
Illegal instruction
Divide by zero
CHK instruction
TRAPV instruction
Privilege violation
Trace
Line 1010 emulator
Line 1111 emulator
(Unassigned - - reserved)
(Unassigned - - reserved)
(Unassigned -- reserved)
Uninitialized interrupt vector
(Unassigned - - reserved)

(Unassigned -- reserved)
Spurious interrupt
Level 1 interru)t autovector
Level 2 interru
Level 3 interru
Level 4 interru
Level 5 interru
Level 6 interru
Level 7 interru

~t autovector
~t autovector
~t autovector
~t autovector
~t autovector
~t autovector

TRAP #0 vector
TRAP #1 vector

TRAP #15 vector
!Unassigned - - reserved)

(Unassigned -- reserved)
User interrupt vector

User interrupt vector

appropriate exception vector is to be found at memory
location 8 × 4 = 32 = $20. Therefore, whenever a privilege
violation occurs, the CPU reads the Iongword at location
$20 and loads it into its program counter.

Although there are normally two words of memory
space devoted to each 32-bit exception vector, as stated
above, the reset exception (vector number 0) is a special
case. The 32-bit Iongword at address $00 0000 is not the
address of the reset handling routine, but the initial value
of the supervisor stack pointer. The actual reset exception
vector is at address $00 0004. Thus the reset exception
takes four words of memory instead of the usual two.

The first operation performed by the 68000 following a
reset is to load the system stack pointer. This is important

00 0000

00 0002

00 0004

00 0006

00 0008

00 000A

} Initial system stack pointer
)

}
} Initial program counter
}

)
} Bus error
}

00 03FC /

00 03FE [_ _

Figure 2.

}
} User interrupt (last of 129)
)

Memory map of the 68000 vector table

because, until a stack is defined, the 68000 cannot deal
with any other type of exception. Once the stack pointer
has been set up, the reset exception vector is loaded into
the program counter and processing continues normally.
The reset exception vector is, of course, the initial (or 'cold
start') entry point into the operating system.

There is yet another difference between the reset
vector and all other exception vectors. The reset exception
vector and the intial value of the supervisor stack pointer
both lie in the supervisor program space, denoted bySP in
Table 1. All other exception vectors lie in supervisor data
space.

USING THE EXCEPTION TABLE

In any 68000 system, an exception vector table must be
maintained in memory. Although the complete table is
512 words (1024 byte) long, it is not necessary to fill it
entirely with exception vectors. For example, if the system
does not implement vectored interrupts, the memory
space from $00 0100 to $00 03FF does not need to be
populated with user interrupt vectors. It is a good idea to
reserve the memory space $00 0000 to $00 03FF for the
exception vector table unless forced to do otherwise,
even if the whole of the table is not being used. All unused
vectors can be preset to the spurious exception handling
routine vector. This approach is in line with the philosophy
of always providing a recovery mechanism for events
which could possibly happen, and which would cause the
system to crash if not adequately catered for.

The 8-bit microprocessor also has its own vector
table; these contain relatively few vectors corresponding
to the limited exception handling facilities of most 8-bit
devices. The table is invariably maintained in the same
ROM that holds the processor's operating system or
monitor. An advantage of putting exception vectors in
ROM is that the table is always there immediately after
power up, but a disadvantage is its inflexibility. Once a
table is in ROM, the vectors cannot be modified to suit
changing conditions• In practice, whenever a vector has to

vol 10 no 4 may 1986 207

be variable, 8-bit processors use a vector pointing to
another table in read/write memory containing the actual
exception handling vector.

As the 68000 is so much more sophisticated than 8-bit
devices and a dynamic or flexible response is sometimes
required for the treatment of exception handling routines,
the exception vector table is frequently held in read/write
memory rather than in ROM. The operating system, held
either in ROM or loaded from disc, sets up the exception
vector table early in the initialization process following a
reset.

A problem here is the reset vector. The two things that
must be in ROM are the reset vector and the system
monitor or bootstrap loader. Clearly, when the system is
powered up and the RESET* input asserted, the reset
exception vector and supervisor stack pointer, loaded
from $00 0004 and $00 0000 respectively, must be in
ROM. At first sight, it might be thought that it is necessary
to place the whole exception vector table in ROM, as it is
not possible to get a four-word ROM just for the reset
vector, and a (512 - 4)-word read/write memory for the
rest of the table. Hardware designers have solved the
problem by locating the exception vector table in read/
write memory and overlaying this with ROM whenever an
access in the range $00 0000 to $00 0007 is made.

Consider a situation in which 4 kbyte of memory in the
range $00 0000-$00 0FFF are provided by read/write
memory. As explained later, the region of RAM at
$00 0000-$00 0007 cannot be accessed by the processor°
Read/write memory extending from $00 0008 to $00 03 FF
holds the exception vector table, which is loaded with
vectors as dictated by the operating system. The remaining
read/write memory from $00 0400 to $00 0FFF, is not
restricted in use, and is freely available to the user or the
operating system.

The 4 kbyte of memory space from $00 1000 to
$00 1FFF is populated by ROM. The first 8 byte of this
ROM, from $00 1000 to $001007, contains the reset
vectors. It is necessary to arrange the hardware of the
68000 system so that a read access to the reset vectors
automatically fetches them from the ROM rather than the
read/write memory. One way of achieving this is demon-
strated by the circuit in Figure 3. The read/write memory
and ROM elements are supplied by conventional
2k X 8 bit chips, and their circuitry is entirely straight-
forward. Read/write memory is selected when CSRAM* is
active low, and ROM when CSROM* is active low.
Whenever an access is made to the region $00 0000-
$00 0007, the output of IC6 (RVEC*) goes active low. The
effect of this is to deselect the read/write memory and to
select the ROM containing the reset vectors.

EXCEPTION PROCESSING

The 68000 responds to an exception in four identifiable
phases.

In phase one, the processor makes a temporary
internal copy of the status register and modifies the
current status register ready for exception processing. This
involves setting the Sbit and clearing the Tb i t (ie

trace bit). The S bit is set because all exception processing
takes place in the supervisor mode. The T bit is cleared
because it is undesirable to have the processor in the trace
mode during exception processing. (The trace mode
forces an exception after the execution of each instruction.
If the T bit were set, an instruction would trigger a trace
exception which would, in turn, cause a trace exception
after the first instruction of the trace handling routine had
been executed. In this way an infinite series of exceptions
would be generated.) Two specific types of exception
have a further effect on the contents of the status word.
After a reset, the interrupt mask bits are automatically set
to indicate an interrupt priority of level 7. An interrupt
causes the interrupt priority to be set to the same value as
the interrupt currently being processed.

In phase two, the vector number corresponding to the
exception being processed is determined. Apart from
interrupts, the vector number is generated internally by
the 68000 according to the exception type. If the
exception is an interrupt, the interrupting device places
the vector number on data lines DO0-D07 of the
processor data bus during the interrupt acknowledge
cycle, signified by a function code (FC2, FC1, FC0) of 1, 1,1
Once the processor has determined the vector number,
it multiplies it by four to extract the location of the
exception processing routine within the exception vector
table.

In phase three, the current 'CPU context' is saved on
the system stack. The CPU context is all the information
required by the CPU to return to normal processing after
an exception. Phase three of the exception processing is
complicated by the fact that the 68000 divides exceptions
into two categories, and saves different amounts of
information accordingto the nature of the exception. The
information saved bythe 68000 is called the 'most volatile.
portion of the current processor context', and is saved in a
data structure called the exception stack frame.

Figure 4 shows the structure of the exception stack
frame. Note that exceptions are classified into three
groups. The information saved during group 1 or group 2
exceptions is only the program counter (two words) and
the status register, temporarily saved during phase one.
This is the minimum of information required by the
processor to restore itself to the state it was in prior to the
exception.

The three groups of exception are categorized in
Table 2. A group 0 exception originates from hardware
errors (the address error has all the characteristics of a bus
error but is generated internally by the 68000) and often
indicates that something has gone seriously wrong with
the system. For this reason the information saved in the
stack frame corresponding to a group 0 exception is more
detailed than that for groups 1 and 2. Figure 4b shows the
stack frame of group 0 exceptions.

The additional information saved in the stack frame by
a group 0 exception is a copy of the first word of the
instruction being processed at the time of the exception
and the 32-bit address that was being accessed by the
aborted memory access cycle. The third new item saved is
a 5-bit value giving the function code which was
displayed on FC2, FC1 and FC0 when the exception

208 microprocessors and microsystems

A23
A22
A21
A20
A19

A18
A17
A16
A15'
A14

A13
A12
A l l
A10
A09

A08
A07
A06,
A05

AS*

) A13
A12

0

UDS*

~C7\ /

fY I
A04
A03

BLOCK*

IC 15 / I C 12

A13, ,
A12----~

LRAM 0
CSRAM*

RVEC*

~ : 13 I IC 14

IC 11 ~lC 9~/~ :'
/ CSROM

SELROM

LDS* Data bus

Address bus

RAM A

(lower
byte)

CS D

(upper
byte)

CS

ROM A

(lower
byte)

CS D

ROM A
(upper
byte)

CS D

11

Figure 3. Implementation of an overlaid reset vector

vol 10 no 4 may 1986 209

SSP -~-

a

Status register

Program counter high

Program counter low

16 bit

lI3 words

SSP Memory access type and function code

Access address high

Access address low

Instruction register

Status register

Program counter high

Program counter low

16 bit -~"

words

[
[

b
Figure 4. Stack frames: a, for group 1 and group 2
exceptions; b, for group 0 exceptions

occurred, together with an indication of whether the
processor was executing a read or a write cycle, and
whether is was processing an instruction or not. This is
diagnostic information which may be used by the
operating system when dealing with the cause of the
exception.

The fourth and final phase of the exception processing
sequence consists of a single operation - - the loading of
the program counter with the 32-bit address pointed at by
the exception vector. Once this has been done, the
processor continues executing instructions normally.

When an exception handling routine has been run to
completion, the instruction 'return from exception' (RTE)
is executed to restore the processor to the state it was in
prior to the exception. RTE is a privileged instruction and
has the effect of restoring the status register and program
counter from the values saved on the system stack. The
contents of the program counter and status register, just

Table 2. Exception grouping according to type and
priority

Group Exception type Time at which processing
begins

0 Reset
Bus error
Address error

1 Trace
Interrupt
Illegal op. code
Privilege

2 TRAP
TRAPV
CHK
Divide by zero

Exception processing begins
within two clock cycles

Exception processing begins
before the next instruction

Exception processing is
by normal instruction
execution

prior to the execution of the RTE, are lost. RTE cannot be
used after a group 0 exception to execute a return.

The second part of this paper, to be published in
Microprocessors MicrosysL Vol 10 No 5 (June 1986), looks
at the way in which interrupt handling is actually
implemented in the 68000.

Alan Clements obtained an
honours degree in electronics
at the University of Sussex,
UK, in 1971 and a doctorate
from Loughborough
University, UK, in 1976.
During the two years he
spent at Loughborough
University as a research
fellow, he studied the
application of micropro-
cessor technology to

adaptive equalizers for distorted digital signals. In 1977
he joined the Department of Computer Science at
Teesside Polytechnic, UK. In the last few years, he has
devoted much of his spare t/me to writing. His first book,
Microprocessor systems design and construction, was
published in 1982 and this was followed by Principles of
computer hardware in 7985.

210 microprocessors and microsystems

Exception handling in the 68000, Part 2

In the second of two tutorial papers, Alan Clements examines in detail the
implementation of hardware and software initiated exceptions on the 68000, with

particular emphasis on interrupts

The paper discusses the implementation by the 68000
microprocessor of hardware and software initiated
exceptions. The three categories of hardware exception - -
resets, bus errors and interrupts ~ are covered first, with
detailed discussion of how vectored and autovectored
interrupts are processed. The software initiated exceptions
discussed are illegal operation codes, traces, emulator-
mode exceptions and traps. An example of the use of a trap
handler is given.

microprocessors exceptions interrupts 68000

Part 1 of this paper 1 introduced the concept of the
exception, a mechanism employed by computers to deal
with certain events. These events cannot easily be
handled by normal 'inline' programming techniques and
require the processor to temporarily interrupt its normal
processing. Part 2 of the paper examines how the 68000
implements asynchronous exceptions, and introduces
the software exception.

HARDWARE INITIATED EXCEPTIONS

Three types of exception are initiated by events taking
place outside the 68000 and are communicated to the
CPU via its input pins; they are the reset, the bus error and
the interrupt. Each of these three exceptions has a direct
effect on the hardware design of a 68000-based micro-
computer. This section examines each of these systems in
more detail, beginning with a look at the control of the
RESET* pin.

Reset

It was stated in Part 1 of the paper 1 that the exception
vector table is frequently located in read/write memory,
and that the circuit shown in Figure 3 of Part I can be used
to overlay the first 8 byte of the read/write memory with
ROM containing the reset vectors. The only other circuitry
associated with the 68000's reset mechanism is that
connected to the RESET* pin itself.

The designers of the 68000 have made RESET* a
bidirectional I /0, which complicates the design of the
reset circuitry. In normal operation the RESET* pin is an

Department of Computer Science, Teesside Polytechnic, Middlesbrough,
Cleveland TS1 3BA, UK

input. Almost all microprocessor systems connect every
device that can be reset to the RESET* pin. This means that
all devices are reset along with the 68000 at power up or
following a manual reset. The 68000 is also capable of
executing a software reset instruction which forces its
RESET* pin active low, resetting all devices connected to
it. This facility was provided to permit a system reset
under software control that does not affect the processor
itself. Consequently the RESET* pin of the 68000 cannot
be driven by gates with active pull-up circuits. RESET*
must be driven by open-collector or open-drain outputs.

Another aspect to note about hardware initiated
resets is that both RESET* and HALT* must be asserted
simultaneously. Like RESET*, the HALT* pin is bidirectional
and must also be driven by an open-collector or open-
drain output. If RESET* and HALT* are asserted together
following a system crash, they must be held low for at least
10 clock cycles to ensure satisfactory operation. However,
at power up they must be held low for at least 100 ms after
the Vcc supply to the 68000 has become established.

A possible arrangement of a reset circuit for the 68000
is given in Figure 5. IC1, a 555 timer, generates an active-
high pulse at its output terminal shortly after the initial
application of power. The timer is configured to operate
in an astable mode, generating a single pulse whenever it
is triggered. The time constant of the output pulse (ie the
duration of the reset pulse) is determined by resistor R2
and capacitor C2. R1 and C1 trigger the circuit on the
application of power. The output is buffered and inverted
by IC2a to become the system active-low power-on-reset
pulse (POR*), which can be used by the rest of the
system as appropriate. A pair of crosscoupled NAND
gates provides a manual reset facility.

+5__ IC2

I Vc c ~ o l i ' ~__ ~_~-.~4..~ b/ HALT" ,~Trigger| ICI Trigger(555) / (68000)
/GND Threshold ~Z~C3 I 5 {~>6 l ~ RESET"

0"I~F,~C, 1 ~ T =0 ,02 --"(68000)
[.47 ,u F

G N D ~

1 "- & > 6]

74LS00

0141-9331/86/05258-10 $03.00 ©

IC2 is an open-collector buffer

Figure 5. Control of RESET* in a 68000-based system

1986 Butterworth & Co. (Publishers) Ltd

2.58 microprocessors and microsystems

B u s er ror

A bus error is an exception raised in response to a failure
by the system to complete a bus cycle. As there are many
possible failure modes, the details of each depending on
the type of hardware used to implement the system, the
detection of a bus error is left to the systems designer
rather than to the 68000 itself. All the 68000 provides is an
active-low input, BERR*, which generates a bus error
exception when asserted.

Figure 6 gives the timing requimments that the BERR*
input must satisfy. To be recognized during the current
bus cycle, BERR* must fulfil one of two conditions: it must
either be asserted at least time tAsl (the asynchronous
input set-up time) before the falling edge of state S4; or it
must be asserted at least time tBELDAL (BERR* low to
DTACK* low) before the falling edge of DTACK*. It is
necessary to maintain BERR* active low until time t.SHBEH
(AS* high to BERR* high) after the address and data strobes
have become inactive. The minimum value of tSHBE H is
zero, implying that BERR* may be negated concurrently
with AS* or LDS*/UDS*. It is important to realize that, if
BERR* meets the timing requirement t~l, it will be
processed in the current bus cycle irrespective of the state
of DTACK*.

There are a number of reasons why BERR* may be
asserted in a system. Typical applications of BERR* are as
follows.

• Illegal memory access. If the processor tries to access
memory at an address not populated by memory,
BERR* may be asserted. BERR* may also be asserted if
an attempt is made to write to a read-only memory
address. The decision as to whether to assert BERR* in
these cases is a design decision. (All 8-bit micro-
processors are quite happy to access nonexistent
memory or to write to ROM!) The philosophy of 68000
systems design is to trap events which may lead to
unforeseen circumstances. If the processor tries to
write to ROM, the operating system can intervene
because of the exception raised by BERR*.

• Faulty memory access. If error-detecting memory is
employed, a read access to a memory location at

S3 $4

CLOCK _ ~ ~
: i

i ~ s l i

BERR" i

: !

DTACK- :i i

~ELDAL

Figure 6. Bus error

$6

/
$5 $7

/
AS* , ~

: t

:tSHBE H •

input (BERR*) timing diagram:
t4sl = 20 ns (min.); tBELDAL = 20 ns (rain.); tSHBE H = 0 ns
(rain.)

which an error is detected can be used to assert BERR*.
In this way the processor will never try to process data
that is in error due to a fault in the memory.
Failure to assert valid peripheral address (VPA*). If the
processor accesses a synchronous bus device and
VPA* is not asserted after some time-out period, BERR*
must be asserted to stop the system hanging up and
waiting for VPA* forever.
Memory privilege violation. When the 68000 is used in
a system with some form of memory management,
BERR* may be asserted to indicate that the current
memory access is violating a privilege. This may be an
access by one user to another user's program. In a
system with virtual memory, it may result from a page
fault, indicating that the data being accessed is not
currently in read/write memory.

Bus error sequence

When BERR* is asserted by external logic and satisfies its
set-up timing requirements, the processor negates AS* in
state S6. As long as BERR* remains asserted the data and
address buses are both floated. When the external logic
negates BERR*, the processor begins a normal exception
processing sequence for a Group 0 exception. Figure 4b
(Part 1 of the paper I) shows that additional information is
pushed onto the system stack to facilitate recovery from
the bus error. Once all phases of the exception processing
sequence have been completed, the 68000 begins to
deal with the problem of the error in the BERR* exception
handling routine. It must be emphasized that the
treatment of the hardware problem which led to the bus
error takes place at a software level within the operating
system. For example, if a user program generates a bus
error, the exception processing routine may abort the
user's program and provide him/her with diagnostic
information to help deal with the problem. The infor-
mation stored on the stack by a bus error exception (or an
address error) is to be regarded as diagnostic information
only and should not be used to institute a retum from
exception. In other words, the 68000 does not support a
return from a Group 0 exception (although the 68010
does).

Rerunning the bus cycle

It is possible to deal with a bus error in a way which does
not involve an exception. If, during a memory access, the
external hardware detects a memory error and asserts
both BERR* and HALT* simultaneously, the processor
attempts to rerun the current bus cycle.

Figure 7 illustrates a rerun cycle. A bus fault is detected
in the read cycle and both BERR* and HALT* are asserted
simultaneously. As long as the HALT* signal remains
asserted, the address and data buses are floated and no
external activity takes place. When HALT* is negated by
the external logic, the processor will rerun the previous
bus cycle using the same address, the same function
codes, the same data (for a write operation) and the same

vol 10 no 5 june 1986 259

CLK

A01 - A23._~..,

AS*
UDS* \
LDS*
R/~ 1

/- \ F

OTAC . \ /

FC0-FC2~I(. . . . X X ~

HALT*

Read Halt Rerun

Figure Z Rerunning the bus cycle

control signals. For correct operation, the BERR* signal
must be negated at least one clock cycle before HALT* is
negated.

A possible implementation of bus error control in a
sophisticated 68000-based system might detect a bus
error and assert BERR* and HALT* simultaneously. The
rising edge of AS* can be used to release BERR* and HALT*
at least one clock cycle later. This guarantees a rerun of the
bus cycle. Of course, if the error is a 'hard' error (ie is
persistent), rerunning the bus cycle will achieve little and
external logic will once again detect the error. A reasonable
strategy would be to permit, say, three reruns and assert
BERR* alone on the next cycle, forcing a conventional bus
error exception.

Interrupt

As discussed in Part 11, an interrupt is a request for service
generated by some external peripheral, which the 68000
implements within the framework of its overall exception
handling procedures. The 68000 offers two schemes for
dealing with interrupts. One is intended for peripherals
specifically designed for 16-bit processors, while the
other is more suited to earlier 8-bit (6800 series) peri-
pherals.

An external device signals its need for attention by
placing a 3-bit code on the 68000's interrupt request
inputs (IPL0*, IPL1 * and IPL2*). The code corresponds to
the priority of the interrupt and is numbered from 0 to 7. A
level 7 code indicates the highest priority, level 1 the
lowest priority and level 0 the default state of no interrupt
request. While it would be possible to design peripherals
with three interrupt request output lines on which they
put a 3-bit interrupt priority code, it is easier to have a

single interrupt request output and to design external
hardware to convert its priority into a 3-bit code suitable
for the 68000.

Figure 8 shows a typical scheme for handling interrupt
requests in a 68000 system. A 741_5148 eight-line to three-
line priority encoder is all that is needed to translate one
of the seven levels of interrupt request into a 3-bit code.
Table 3 gives the truth table for this device. Input El* is an
active-low enable input, used in conjunction with outputs
GS and EO to expand the 74LS148 in systems with more
then seven levels of priority.

As the enable input and expanding outputs are not
needed in this application of the 74LS148, Table 3 has
been redrawn in Table 4 with inputs 1-7 renamed IRQ1 *-
IRQ7*, respectively, and outputs A0-A2 renamed
IPL0*-IPL2*. It must be appreciated that all inputs and all
outputs are active low, so that an output value 0, 0, 0
denotes an interrupt request of level 7, while an output 1,
1, 1 denotes a level 0 interrupt request (ie no interrupt).

Inspecting Table 4 reveals that a logical zero on
interrupt request input i forces interrupt request inputs 1
to i - 1 into 'don't care' states (ie if interrupt IRQi* is
asserted, the state of interrupt request inputs IRQI* to

IRQ7.
2 ~ IRQ6*
~s mo5. =

IRQ3.

IRQlo

' IR'

eriph

4 7

ia, , I [perlp~:r~, 2 IRQ" Periphera

+5 V Encoded i n t e r r u p t
*5 V 0 V hnes t o CPU

215 =.~
=1 44 ~ u c A2 _ _ 6 IPL2 .13d3 = g z 3

|-12J2 £ ~ A1 / IPL1

J-~o ~=~ Ao
v l GS ~ 68~ 0 CPU

74LS14B EO 1~

3

Figure 8. Interrupt request encoding

Table3. Truth table for the 74LS148 eight-line to
three-line priority encoder

Inputs Outputs

El* 0 1 2 3 4 5 6 7 A2 A1 A0 GS E0

1 X X X X X X X X 1 1 1 1 1
0 I I I I I I I I 1 1 1 1 0
0 X X X X X X X O 0 0 0 0 1
0 X X X X X X O I 0 0 1 0 1
0 X X X X X O I I 0 1 0 0 1
0 X X X X O l l l 0 1 1 0 1
0 X X X O l l l l 1 0 0 0 1
0 X X O I I I I I 1 0 1 0 1
0 X O l l l l l l 1 1 0 0 1
0 0 1 1 1 1 1 1 1 1 1 1 0 1

0 = low-level signal (< VIL); 1 = high-level signal (> VIH);
X = 'don't care'

260 microprocessors and microsystems

Table 4. Truth table for a 74LS148 configured as in Figure 8

Inputs

Level I RQI * I RQ2* I RQ3* I RQ4* I RQS* I RQ6*

Outputs

IRQ7* IPL2* IPL1 * IPLO*

7 X X X X X X
6 X X X X X 0
5 X X X X 0 1
4 X X X 0 1 1
3 X X 0 1 1 1
2 X 0 1 1 1 1
1 0 1 1 1 1 1
0 1 1 1 1 1 1

0 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 = low-level signal (< VIID; 1 = high-level signal (> VIH); X = 'don't care'

I R Q [i - 1] * has no effect on the output code IPL0*-
IPL2*). It is this property that the microprocessor systems
designer relies on. Devices with high-priority interrupts
are connected to the higher-order inputs. Should two or
more levels of interrupt occur simultaneously, only the
higher value is reflected in the output code to the 68000's
IPL pins.

Figure 8 demonstrates that the 74LS148 does not
restrict the system to only seven devices capable of
generating interrupt requests. More than one device can
be wired to a given level of interrupt request as illustrated
by peripherals 2 and 3. If peripheral 2 or 3 (or both) asserts
its interrupt request output (IRQ*), a level 2 interrupt is
signalled to the 68000, provided that levels 3-7 are all
inactive. The mechanism used to distinguish between an
interrupt from peripheral 2 and one from peripheral 3 is
called 'daisychaining' and enables several devices to
share the same level of interrupt priority while permitting
only one of them to respond to an lACK cycle. Daisy-
chaining is implemented by feeding the lACK* response
from the CPU into the first peripheral in the daisychain.
When an lACK cycle is executed, the first peripheral
receives the lACK* signal from the CPU. If this peripheral
generated the interrupt, it responds to the lACK*. If it did
not generate the interrupt, it passes the lACK* signal onto
the next peripheral in the chain. Note that, in this
arrangement, each peripheral requires an IACK__IN* pin
and an IACK__OUT* pin.

Processing the interrupt

All interrupts to the 68000 are latched internally and made
pending. Group 0 exceptions (reset, bus error, address
error) take precedence over an interrupt in Group 1.
Therefore, if a Group 0 exception occurs, it is serviced
before the interrupt. A trace exception in Group 1 takes
precedence over the interrupt, so that if an interrupt
request occurs during the execution of an instruction
while the T bit is asserted, the trace exception has priority
and is serviced first. Assuming that none of the above
exceptions have been raised, the 68000 compares the
level of the interrupt request with the value recorded in
the interrupt mask bits of the processor status word.

If the priority of the pending interrupt is lower than or

equal to the current processor priority denoted by the
interrupt mask, the interrupt request remains pending and
the next instruction in sequence is executed. Interrupt
level 7 is treated slightly differently, as it is always
processed regardless of the value of the interrupt mask
bits (ie a level 7 interrupt always interrupts a level 7
interrupt if one is currently being processed). Any other
level of interrupt can be interrupted only by a higher level
of priority. Note that a level 7 interrupt is edge sensitive
and is interrupted only by a high-to-low transition on
I RQ7*.

Once the processor has made a decision to process an
interrupt, it begins an exception processing sequence as
described earlier. The only deviation from the normal
sequence of events dictated by a Group 1 or Group 2
exception is that the interrupt mask bits of the processor
status word are updated before exception processing
continues. The level of the interrupt request being
serviced is copied into the current processor status. This
means that the interrupt cannot be interrupted unless the
new interrupt has a higher priority.

Example. Suppose that the current (ie pre-interrupt)
interrupt mask is level 3. If a level 5 interrupt occurs, it is
processed and the interrupt mask is setto level 5. If, during
the processing of this interrupt, a level 4 interrupt is
requested, it is made pending even though it has a higher
priority than the original interrupt mask. When the level 5
interrupt has been processed, a return from exception is
made and the former processor status word is restored. As
the old interrupt mask was level 3, the pending interrupt
of level 4 is then serviced.

Unlike other exceptions, an interrupt may obtain its
vector number extemally from the device that made the
interrupt request. As stated above, there are two ways of
identifying the source of the interrupt, one vectored and
one autovectored.

Vectored interrupt

After the processor has completed the last instruction
before recognizingthe interrupt and stacked the low-order
word of the program counter, it executes an interrupt
acknowledge cycle (lACK cycle). During an lACK cycle,

vol 10 no 5 june 1986 261

the 68000 obtains the vector number from the interrupting
device, with which it will later determine the appropriate
exception vector.

Figure 9 shows the sequence of events taking place
during an lACK cycle; it can be seen that an lACK cycle is
just a modified read cycle. Because the 68000 puts out the
special function code 1, 1, 1 on FC2, FC1 and FC0 during
an lACK cycle, the interrupting device is able to detect the
lACK cycle. At the same time, the level of the interrupt is
put out on address lines A01-A03. The lACK cycle should
not decode memory addresses AO4-A23 and memory
components should be disabled when FC2-FC0 = 1,1,1.
The device that generated the interrupt at the specified

Processor Interrupting device

I Request interrupt

t
Grant interrupt request

(1) P~ace interrupt level
on A01 ,A02,A03.
All other address
lines high

(2) Set R/W to read
(3) Set FC to interrupt

acknowledge
(4) Assert AS*
(5) Assert lower and

upper data strobes

t
t

Provide interrupt vector

(1 } Place data on
D00-D07

(2) Assert DTACK*

t
Acquire vector number

(1) Latch vector number
(2) Negate UDS*
(3) Negate LDS*

t
I Interrupt processing

Figure 9.

Release bus

Negate DTACK*

The interrupt acknowledge sequence

level then provides a vector number on DOO-D07 and
asserts DTACK*, as in any normal read cycle. The
remainder of the lACK cycle is identical to a read cycle.
Figure 10 gives the timing diagram of an lACK cycle. Note
that the lACK cycle falls between the stacking of the low-
order word of the program counter and the stacking of the
high-order word.

After the peripheral has provided a vector number on
D00-D07, the processor multiplies it by four to obtain the
address of the entry point to the exception processing
routine from the exception vector table. Although a
device can provide an 8-bit vector number giving 256
possible values, there is space reserved in the exception
vector table for only 192 unique vectors. This is more than
adequate for the vast majority of applications. (However,
a peripheral can put out vector numbers 0-63, as there is
nothing to stop these numbers being programmed into
the peripheral and the processor does not guard against
this situation. In other words, if a programmer programs a
peripheral to respond to an lACK cycle with, say, a vector
number 5, then an interrupt from this device would cause
an exception corresponding to vector number 5 - - the
value also appropriate to a divide-by-zero exception.
While at times this might be useful, it seems an oversight
to allow interrupt vector numbers to overlap with other
types of exceptions.)

A possible arrangement of hardware needed to
implement a vectored interrupt scheme is given in Figure
11. A peripheral asserts its interrupt request output,
IRQ5*, which is encoded by IC3 to provide the 68000
with a level 5 interrupt request. When the processor
acknowledges this request, it places 1,1,1 on the function
code output, which is decoded by the three-line to eight-
line decoder IC1. The interrupt acknowledge output
(lACK*) from IC1 enables a second three-line to eight-line
decodbr, IC2, which decodes address lines AO1-A03
into seven levels of interrupt acknowledge. In this case,
lACK5* from IC2 is fed back to the peripheral, which then
responds by placing its vector number onto the low-order
byte of the system data bus. If the peripheral has not been
programmed to supply an interrupt vector number it
should place $0F on the data bus, corresponding to an
uninitialized interrupt vector exception.

A4-A23
At-A3
AS. --\

UPS. - - T - - ~
LDS" - - ' ~ - - - ' ~
R~
DTACK"
DS.D1 =
DOD7
FCO-2
IPL0-2

Figure 10.

} N----f) - (
) ~,~---(y-(_

/ N-~-~ ~ / - -

\ I ~', \
\ / N \ ~ z ~ - - - X

%

% .Y

I Last bus cycle of Stack | lACK cycle Stack and]
~nstructiOn(read or write) .]~Ps CI] ~ ~ (vect b quisition)_~ vector fetch 1 ~ D'I

Interrupt acknowledge and the lACK cycle

262 microprocessors and microsystems

IL G]L m

lACK5,

IACK*

IRQ*

~ A S . •

. D S . ~

R N g *

DTACK*

D00-D07

Decodes A01-A03 into seven levels
of interrupt acknowledge

1
A

B

C

oo
lACK1" : :
IACK2* - c

lACK3* ~ c
IACK4* • c

-o[Y0 A

--o(Y1 ~ B

--olY2 ~ C
-01 Y3 ~
-~ [Y4

lACK6"
lACK7* •

c ~ E ,---AS ° - ~ I Y 5
- c - - E ~ + 5 V - -<~Y6 U_

- c E ~ , Y 7 E E

decoder

IRO5"

IRQI*
IRQ2*
IRQ3"
IRQ4*

I ROd °
IRQ7*

Data

I A01
i A02
A03

FC0
FC1
FC2

68000
CPU

IPL0
IPL1
IPL2

AS.
LDS-
R/W
DTACK"

D00-D07

Figure 11. Implementing the vectored interrupt

Autovectored interrupt

As set out above, a device which generates an interrupt
request must be capable of identifying itself when the
68000 carries out an interrupt acknowledge sequence.
This presents no problem for modern 68000-based
peripherals such as the 68230 parallel interface-timer.

Unfortunately, older peripherals originally designed for
8-bit processors do not have interrupt acknowledge
facilities and are unable to respond with the appropriate
vector number on D00-D07 during an lACK cycle. The
systems designer could overcome this problem by
designing a subsystem which supplied the appropriate
vector as if it came from the interrupting peripheral. Such an
approach is valid but a little messy: a single-chip
peripheral would need several components just to
provide a vector number in an lACK cycle.

An alternative scheme is available for peripherals that
cannot provide their own vector numbers. An lACK cycle,
like any other memory access, is allowed to continue to
state $5 by the assertion of DTACK*. If, however, DTACK*
is not asserted but VPA* is asserted, the 68000 carries out
an autovectored interrupt.

Valid peripheral address, VPA*, belongs to the 68000's
synchronous data bus control group of signals. When
asserted, VPA* informs the 68000 that the present
memory access cycle is to be synchronous and to 'look
like' a 6800 series memory access cycle. If the current bus

cycle is an lACK cycle, the 68000 executes a 'spurious
read cycle', ie an lACK cycle is executed but the
interrupting device does not place a vector number on
D00-D07. Nor does the 68000 read the contents of the
data bus; instead, it generates the appropriate vector
number internally.

The 68000 reserves vector numbers 25-31 (decimal)
for its autovector operation (see Table 1). Each of these
autovectors is associated with an interrupt on IRQI*-
IRQ7*. For example, if IRQ2* is asserted followed by VPA*
during the lACK cycle, vector number 26 is generated by
the 68000 and the interrupt handling routine address read
from memory location $000068.

Should several interrupt requesters assert the same
interrupt request line, the 68000 will not be able to
distinguish between them. The appropriate interrupt
handling routine must poll each of the possible devices in
turn (ie the status register of each peripheral must be read
to determine the source of the interrupt).

The timing diagram of an autovector sequence is given
in Figure 12 and is almost identical to the vectored lACK
sequence of Figure 10, except that VPA* is asserted shortly
after the interrupter has detected an lACK cycle from
FC0-FC2. Because VPA* has been asserted, wait states
are introduced into the current read cycle in order to
synchronize the cycle with VMA*. Note that this is a
dummy read cycle as nothing is read. (The autovector is
generated internally and no device places data on D00-
D07 during the cycle.)

The hardware necessary to implement an autovectored
interrupt is minimal. Figure 13 shows a possible arrange-
ment involving a typical 6800 series peripheral which
requests an interrupt in the normal way by asserting its
IRQ* output. This is prioritized by IC3 and an acknowledge
signal is generated by ICs 1 and 2.

The interrupting device cannot, of course, respond to
an lACK* signal. Instead, the appropriate interrupt
acknowledge signal from the 68000 is combined with the

SO $2 $4 $6 SO S2 ,$4 w w w w w w w w w w $6 SO S2

CLK

A1-A3 ~
A4-A23 ~

AS. - - X
UDS* - -~ . /---X /'-"X_
LDS* ~
R/W
DTACK- " \ /

DB-D15
D0-D7 ,
FC0-2

IPLO*-IPL2* \
E I
V P A *

V M A *

I N o r m a l
cycle

'C2

Figure 12.

I I [__
\ / - -

Autovector operat ion _t

Timing diagram of an autovectored interrupt

vol 10 no 5 june 1986 263

lACK6*
i

lACK1*
lACK2*
lACK3*
lACK4*
lACK5*

lACK7*

YO A ~--
: Y1 ~B

Y4 ! - Y5 ~E
Y6 --~E

,, Y7

Y0
---q Y1 Z

Y2
Y3
Y4
Y5
Y6

I
cl Y7

I . E
Q.

Q_

IRQ*

lACK*
D

l eND-- 0
Low if'lRO6* - ~ 1 --~ 2

=0
and lACK6* --~ 3

=0 --~ 4 ~
IRQ6*

~; 6

--~ 7

Interrupt
request
inputs

A01
A02
A03

Figure 13. Hardware
autovectored interrupt

AS*

FC0
FC1
FC2

68000
CPU

. VPA*

IPL0
IPL1
IPL2

needed to implement an

\
interrupt request o~Jtput from the peripheral in an OR
gate. Only when the peripheral has asserted its IRQ* and
the correct level of lACK* has been generated does the
output of the OR gate go low to assert VPA* and force an
autovectored interrupt.

S O F T W A R E IN IT IATED E X C E P T I O N S

A software initiated exception is one that occurs as the
result of an attempt to execute certain types of instruction
(not the address error which is classified as a hardware
initiated interrupt). Software initiated interrupts fall into
two categories: those executed deliberately by the
programmer and those representing a 'cry for help'.

The 'help' group comprises the illegal op. code,
privilege violation, TRAPV and divide-by-zero exceptions.
These are all exceptions that are normally generated by
something going wrong; therefore the operating system
needs to intervene and sort things out. The nature of this
intervention is very much dependent on the structure of
the operating system. Often, in a multiprogramming
environment, the individual task creating the exception
will be aborted, leaving all other tasks unaffected.

Software exceptions initiated by the programmer are
the trace, the trap and the emulator. The trace exception
mode is in force whenever the T bit of the status word is
set. After each instruction has been executed, a trace
exception is automatically generated if the T bit is set. This
is done to allow the user to monitor the execution of a
program.

Illegal op. code except ions

Consider the illegal op. code exception. This is raised
when the 68000 attempts to execute an op. code that
does not form part of the 68000's instruction set. The only
way that this can happen is when something has gone
seriously w rong - -an op. code has been corrupted in
memory or a jump has been made to a region containing
nonvalid 68000 code. The latter event frequently results
from wrongly computed GOTOs. Clearly, once such an
event has occurred, it is futile to continue trying to
execute further instructions as they have no real meaning.
By generating an illegal op. code exception, the operating
system can inform users of the problem and invite them
to do something about it.

Trace except ions

The simplest trace facility would allow the user to dump
the contents of all registers on the CRT terminal after the
execution of each instruction. Unfortunately, this leads to
the production of vast amounts of utterly useless
information. For example, if the 68000 were executing an
operation to clear an array by executing a CLR.L (A4)+
instruction 64ktimes, the human operatorwould not wish
to see the contents of all registers displayed after the
execution of each CLR.

A better approach is to display only the information
needed. Before the trace mode is invoked, the user
informs the operating system of the conditions under
which the results of a trace exception are to be displayed.
Some of the events which can be used to tdgger the
display of registers during a trace exception are

• execution of a predefined number of instructions (eg
contents of registers may be displayed after, say, 50
instructions have been executed)

• execution of an instruction at a given address (equi-
valent to a break point)

• execution of an instruction falling within a given range
of addresses, or the access of an operand falling within
the same range

• as last event, but with the contents of the register
displayed only when an address generated by the
68000 falls outside the predetermined range

• execution of a particular instruction (eg contents of the
registers may be displayed following the execution of a
TAS instruction)

• any memory access which modifies the contents of a
memory location (ie any write access)

264 microprocessors and microsystems

It is possible to combine several of the above conditions
to create a composite event. For example, the contents of
registers may be displayed whenever the 68000 executes
write accesses to the region of memory space between
$3A 0000-$3A 00FF.

Emulator-mode exceptions

Emulator-mode exceptions provide the systems designer
with tools to develop software for new hardware before
that hardware has been fully realized. Suppose a company
is working on a coprocessor to generate the sine of a 16-
bit fractional operand. For commercial reasons, it may be
necessary to develop software for this hardware long
before the coprocessor is in actual production.

By inserting an emulator op. code (ie an exception call)
at the point in a program at which the sine is to be
calculated by the hardware, the software can be tested as
if the coprocessor were actually present. When the
emulator op. code is encountered, a jump is made to the
appropriate emulator handling routine. In this routine, the
sine is calculated by conventional techniques.

Trap exception

The trap is the most useful software user initiated
exception available to the programmer. Indeed, it is one
of the more powerful functions provided by the 68000.
There are no significant differences between traps and
emulator exceptions; they differ only in their applications.
There are sixteen traps, TRAP #0-TRAP //15, which are
associated with exception vector numbers 32-47
(decimal) respectively.

Just as emulator exceptions are used to provide
functions in software that will later be implemented in
hardware, trap exceptions create new operations or 'extra
codes' not provided directly bythe 68000 itself. However,
the purpose of the trap is to separate the details of certain
'housekeeping' functions from the user- or applications-
level program.

Consider I/O transactions. These involve real hardware
devices and the precise nature of an input operation on
system A may be very different from that on system B,
even though both systems put the input to the same use.
System A may operate a 6850 ACIA in an interrupt-driven
mode to obtain data, while system B may use in Inte18055
parallel port in a polled mode to carry out the same
function. Clearly, the device drivers (ie the software which
controls the ports) in these systems differ greatly in their
structures.

Applications programmers do not wish to consider the
fine details of I/O transactions when writing their
programs. One solution is to use a jump table and to
thread all I/O through this table. Table 5 illustrates this
approach. It can be seen that the applications programmer
deals with all device-dependent transactions by indirect
jumps through a jump table. For example, all console
input at the applications level is carded out by BSR
GETCHAR. At the address GETCHAR in the jump table,

the programmer inserts a link (JSR INPUT) to the actual
routine used in his/her own system.

This is a perfectly acceptable approach to the problem
of device dependency. Unfortunately, it suffers from the
limitation that the applications program must be tailored
to fit on to the target system. This is done by tagging on
the jump table. An alternative approach, requiring no
modification whatsoever to the applications software, is
provided by the trap exception. This leads to truly system-
independent software.

When a trap is encountered, the appropriate vector
number is generated and the exception vector table
interrogated to obtain the address of the trap handling
routine. Note that the exception vector table fulfils the
same role as the jump table (Table 5). The difference is
that the jump table forms part of the applications program
while the exception vector table is part of the 68000's
operating system.

An example of a trap handler is found on the Motorola
educational single board (ECB) computer. This is known
as the 'TRAP #14 handler' and provides the user with a
method of accessing functions within the ECB's monitor
software without the user having to know their addresses.

The versatility of a trap exception can be increased by
passing parameters from the user program to the trap
handler. The TRAP #14 handler of Tutor (the monitor on
the Motorola ECB) provides for up to 255 different
functions to be associated with TRAP//14. Before the trap
is invoked, the programmer must load the required
function code into the least significant byte of DT. For
example, to transmit a single ASCII character to port 1, the
following calling sequence is used.

OUTCH EQU 248 (Equate the function
code to name of
activity)

MOVE.B #OUTCH, D7 (Load function code
in D7)

TRAP #14 (Invoke TRAP #14
handler)

Table 6 gives a list of the functions provided by the TRAP
#14 exception handler of the Tutor monitor on the ECB.

Table 5. The jump table

ORG $001000 Jump table
GETCHAR JMP INPUT
OUTCHAR JMP OUTPUT INPUT, OUTPUT
GETSECTOR JMP D I S L I N DISLIN,DISK__OUT
PUTSECTOR JMP D ISLOUT Provided by user

BSR GETCHAR input a char

BSR PUTSECTOR write sector
Application program
(address of subroutines
not system dependent)

vol 10 no 5 june "/986 265

Table 6. Functions provided by the TRAP #14 handler
on the EBC

Function value Function name Function description

255 - - Reserved func t ions-
end of table indicator

254 - - Reserved function - -
used to link tables

253 LINKIT Append user table to
TRAP14 table

252 FIXDAOD Append string to
buffer

251 FIXBUF Initialize A5 and A6
to BUFFER

250 FIXDATA Initialize A6 to
BUFFER and append
string to BUFFER

249 FIXDCRLF Move CR, LF string to
buffer

248 OUTCH Output single
character to port 1

247 INCHE Input single character
from port 1

246 -- Reserved function
245 -- Reserved function
244 CHRPRNT Output single

character to port 3
243 OUTPUT Output string to

port 1
242 OUTPUT21 Output string to

port 2
241 PORTIN1 Input string from

port 1
240 PORTIN20 Input string from

port 2
239 TAPEOUT Output string to

port 4
238 TAPEIN Input string from

port 4
237 PRCRLF Output string to

port 3
236 HEX2DEC Convert hex values to

ASCI I-encoded
decimal

235 GETHEX Convert ASCII
character to hex

234 PUTHEX Convert one hex digit
to ASCII

233 PNT2HX Convert two hex
digits to ASCII

232 PNT4HX Convert four hex
digits to ASCII

231 PNT6HX Convert six hex digits
to ASCII

230 PNT8HX Convert eight hex
digits to ASCII

299 START Restart Tutor; perform
initialization

228 TUTOR Go to Tutor; print
prompt

Alan Clements obtained an
honours degree in electronks
at the University of Sussex,
UK, in 1971 and a doctorate
from Loughborough
University, UK, in 1976.
During the two years he
spent at Loughborough
University as a research
fellow, he studied the
application of micropro-
cessor technology to

adaptive equalizers for distorted digital signals. In 1977
he joined the Department of Computer Science at
Teesside Polytechnic, UK. In the last few years, he has
devoted much of his spare time to writing. His first book,
Microprocessor systems design and construction, was
published in 1982 and this was followed by Principles of
computer hardware in/985.

227 OUT1 CR

226 GETNUMA

225 GETNUMD

224 PORTIN1N

223-128

127-0

Output string plus CR,
LF to port 1
Convert ASCII
encoded hex to hex
Convert ASCII
encoded decimal
to hex
Input string from
Port 1; no automatic
line feed
Reserved
User-defined
functions

CONCLUSIONS

These two papers have looked at the way in which the
68000 implements exception handling.

Over the past few years, microprocessors have become
faster and are able to access much larger memory spaces
than those available to earlier 8-bit machines. However,
the improvements in the exception handling mechanisms
of today's microprocessors are as significant as advances in
microprocessor performance (ie throughput). Exception
handling carried out within the framework of the 68000%
user/supervisor operating modes brings new security
mechanisms to microcomputers. Modem multiuser,
multitasking systems require more than mere performance.
They must have mechanisms which protect one task from
illegal access by another task. Equally, they require
mechanisms which protect the system from a wide range
of 'abuses'.

The 68000 provides all these facilities. The operating
system interface is furnished by the trap; protection from
some forms of abuse is provided by invalid instruction
exceptions, uninitialized interrupt exceptions etc.
Hardware exceptions (eg bus error) protect the system
from faulty hardware.

266 microprocessors and microsystems

REFERENCE

1 Clements, A 'Exception handling in the 68000, Part 1'
Microprocessors MicrosysL Vol 10 No 4 (May 1986)
pp 202-210

BIBLIOGRAPHY

Bacon, J The Motorola MC68000 Prentice-Hall, Englewood
Cliffs, NJ, USA (1986)
Eccles, W J Microprocessor systems, u a 16-bit approach

Addison-Wesley, Wokingham, UK (1985)
Jaulent, P The 68000 hardware and software Macmillan,
London, UK (1985)
Triebel, W A and Singh, A The 68000 microprocessor
architecture, software and interfacing techniques Prentice-
Hall, Englewood Cliffs, N J, USA (1986)
The VMEbus specification manual Printek, Benton Harbour,
MI, USA (1985)
MC68000 educational computer board user's manual
(MEXKECB/D2) Motorola, Austin, TX, USA (1982)
The MC68000 data manual Motorola, Austin, TX, USA
(1983)

vol 70 no 5 june 1986 267

