
Exception handling in the 68000, Part 1 
Motorola's 68000 is an example of a microprocessor with sophisticated exception 

handling facilities. In the first of two tutorial papers, Alan Clements presents an 
overview of the 68000's exceptions and interrupts 

The paper gives an overview of the implementation of 
exception handling in the 68000 microprocessor, starting 
with an introductory discussion of interrupts. The different 
types of interrupt are outlined. This is followed by a 
discussion of privileged states on the 68000. The types of 
exception supported by the 68000 are described, as are the 
use and maintenance of the exception vector table. Finally, 
the response of the 68000 CPU to an exception is covered. 

microprocessors exceptions interrupts 68000 

This two-part paper examines how the 68000 16-bit 
microprocessor implements exception handling. 

Most of the first- and second-generation 8-bit micro- 
processors had rather primitive exception handling 
facilities consisting of little more than one or two interrupt 
request inputs and some form of software interrupt. 
Modern high-performance microprocessors have very 
sophisticated exception handling mechanisms and can 
deal with multilevel, prioritized, vectored interrupts 
together with a wide range of software traps and operating 
system calls. The paper begins with a brief look at 
interrupts, which are a special case of the more general 
exception processing capability of a computer. Part 2 of 
the paper shows in detail how the 68000 handles 
interrupts. 

INTERRUPTS 

A computer executes the instructions of a program 
sequentially unless a jump or conditional branch modifies 
their order, or unless a subroutine is called. In such 
cases, any deviation from the sequential execution of 
instructions is determined by the programmer. Deviations 
caused by conditional branches or subroutines are said 
to be synchronous, because they occur at predetermined 
points in the program. Under certain circumstances this 
arrangement is very. inefficient. 

Suppose a microprocessor is reading data from a 
keyboard at an average rate of 250 characters per minute, 
corresponding to approximately four characters per 
second. In a 68000 system, the processor reads the status 
of a memory-mapped peripheral to determine whether or 
not a key has been pressed. If no key has been pressed, a 
branch is made back to the instruction which reads the 
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status of the peripheral, and the cycle continues until a 
key is pressed. The following program shows how this is 
done. 

KEY _STATUS EQU $F00000 (Lo{ation of input statu_,, 
word) 

KEY_ VALUE EQU KEY__STATUS -e ,: (Location of input data 
w~rd) 

LEA.L KEY~TATUS, AO {AO points to Key status} 
LEA.L KEY_VALUE, A1 (AI points to Key value) 

TEST LOOP BTST.B #0, (AO) (Test status, ie least 
significant bit) 

BEQ lESt __LOOP (Repeat while l{odst 
qgnificant bit clear) 

MOVE.B {A1 ), I) ~ (Read the data) 

The two instructions BTST.B #0, (A0} and BEQ TEST_LOOP 
constitute a 'polling loop', which is executed until the 
least significant bit of the status word is true, signifying that 
the data from the keyboard is valid. These two instructions 
take 20 clock cycles to execute on the 68000, requiring 
2 ps with a 10 MHz clock. Thus, for each key pressed, the 
polling loop is executed approximately 100 000 times! 
Quite clearly, this is a grossly inefficient use of CPU t ime 

In some applications, the time wasted in executing a 
polling loop is of little significance. If an operator is sitting 
at the keyboard of a personal computer thinking about the 
next word to enter, for example, it is of no consequence 
that the CPU is asking the keyboard if it has a new 
character every 2 lus or so. In more sophisticated applica- 
tions, the CPU cannot be allowed to waste time executing 
polling loops. There may be a queue of programs waiting 
to be run or some peripheral needing continual attention 
while another program is being run, or there may be a 
background task and a foreground task. 

A technique for dealing more effectively with I/O 
transactions has been implemented on all micro- 
processors: it is called an interrupt handling mechanism. 
An interrupt request line, IRQ, is connected between the 
peripheral and the CPU. Whenever the peripheral is ready 
to take part in an I/O operation, it asserts the IRQ line and 
invites the CPU to deal with the transaction. The CPU is 
free to carry out background tasks between interrupt 
requests from the peripheral. 

An interrupt is clearly an asynchronous event, because 
the processor cannot know at which instant a peripheral 
such as a keyboard will generate an interrupt. In other 
words, the activity generating the interrupt bears no 
particular timing relationship to the activity that the 
computer is carrying out between interrupts. When an 
interrupt occurs, the computer first decides whether to 
deal with it (ie to se~,ice it), or whether to ignore it for the 
time being. If the computer is doing something which 
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must be completed within a given time, it ignores 
interrupts. Should the computer decide to respond to the 
interrupt, it must carry out the following sequence of 
actions. 

(1) Complete its current instruction. All instructions are 
indivisible, which means they must be executed to 
completion. A more sophisticated architecture might 
allow the temporary suspension of an instruction. 

(2) The contents of the program counter must be saved 
in a safe place, so that the program can continue from 
the point at which it was interrupted after the 
interrupt has been serviced. The program counter is 
invariably saved on the stack so that interrupts can, 
themselves, be interrupted without losing their return 
addresses. 

(3) The state of the processor is saved on the stack. 
Clearly, it would be unwise to allow the interrupt 
service routine to modify, say, the value of the carry 
flag, so that an interrupt occurring before a BCC 
instruction would affect the operation of the BCC 
after the interrupt had been serviced. In general, the 
servicing of an interrupt should have no effect 
whatsoever on the execution of the interrupted 
program. (This statement is qualified below in dealing 
with software interrupts, which are a special type of 
synchronous event.) 

(4) A jump is then made to the location of the interrupt 
handling routine, which is executed like any other 
program. After this routine has been executed, a 
return from interrupt is made, the program counter 
restored, and the system status word returned to its 
pre-interrupt value. 

Before examining the way in which the 68000 deals with 
interrupts, it is worthwhile considering some of the key 
concepts emerging from any discussion of interrupts. 

Nonmaskable interrupts 

An interrupt request is so called because it is a request, 
and therefore carries the implication that it may be 
denied or deferred. Whenever an interrupt request is 
deferred, it is said to be masked. Sometimes it is necessary 
for the computer to respond to an interrupt no matter 
what it is doing. Most microprocessors have a special 
interrupt request input called a 'nonmaskable interrupt 
input' (NMI). Such an interrupt cannot be deferred and 
must always be serviced. 

Nonmaskable interrupts are normally reserved for 
events such as loss of power. In this case, a low voltage 
detector generates a nonmaskable interrupt as soon as 
the power begins to decay. This forces the processor to 
deal with the interrupt and perform an orderly shutdown 
of the system before the power drops below a critical 
level and the computer fails completely. The 68000 has a 
single (level 7) nonmaskable interrupt request. 

Prioritized interrupts 

In an environment where more than one device is able to 
issue an interrupt request, it is necessary to provide a 

mechanism to distinguish between an important interrupt 
and a less important one. For example, if a disc drive 
controller generates an interrupt because it has some data 
ready to be read by the processor, the interrupt must be 
serviced before the data is lost and replaced by new data 
from the disc drive. On the other hand, an interrupt 
generated by a keyboard interface probably has from 
250 ms to several seconds before it must be serviced. 
Therefore an interrupt from a keyboard can be deferred if 
interrupts from devices requiring urgent attention are 
pending. 

For the above reasons, microprocessors are often 
provided with prioritized interrupts. Each interrupt has a 
predefined priority, and a new interrupt with a priority 
lower than or equal to the current one cannot interrupt 
the processor until the current interrupt has been dealt 
with. Equally, an interrupt with a higher priority can 
interrupt the current interrupt. The 68000 provides seven 
levels of interrupt priority. 

Vectored interrupts 

A vectored interrupt is one in which the device requesting 
the interrupt automatically identifies itself to the processor. 
Some 8-bit microprocessors lack a vectored interrupt 
facility and have only a single interrupt request input 
(IRQ*). When IRQ* is asserted, the processor recognizes 
an interrupt but not its source. This means that the 
processor must examine, in turn, each of the peripherals 
that may have initiated the interrupt. To do this, the 
interrupt handling routine interrogates a status bit 
associated with each of the peripherals. 

More sophisticated processors have an interrupt 
acknowledge output line, lACK, which is connected to all 
peripherals. Whenever the CPU has accepted an interrupt 
and is about to service it, the CPU asserts its interrupt 
acknowledge output. An interrupt acknowledge from the 
CPU informs the peripheral that its interrupt is about to be 
serviced. The peripheral then generates an 'identification 
number' which it puts on the data bus, allowing the 
processor to calculate the address of the interrupt 
handling routine appropriate to the peripheral. This is 
called a vectored interrupt. The 68000 provides the 
designer with both vectored and nonvectored interrupt 
facilities. 

PRIVILEGED STATES AND THE 68000  

Having introduced the interrupt the next step is to look at 
how the 68000 handles exceptions, which are a more 
general form of interrupt. 

The 68000 is an unusual processor because it always 
operates in one of two states: either supervisor state or 
user state. User and supervisor states are only relevant to 
multitasking systems in which several user tasks are run 
under control of the operating system. By executing the 
operating system in the supervisor mode and the user 
tasks in the user mode, it becomes relatively easy to 
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prevent one user task from accessing the memory space 
of another task or of the operating system. 

The supervisor state is the higher state of privilege and 
is in force whenever the S bit of the status register is true. 
All the 68000's instructions can be executed while the 
processor is in this state. The user state is the lower state of 
privilege, and certain instructions cannot be executed in 
this state. Each of the two states has its own stack pointer, 
so that the 68000 has two A7 registers. The user-mode A7 
is called the user stack pointer (USP) and the supervisor- 
mode A7 is called the supervisor stack pointer (SSP). Note 
that the SSP cannot be accessed from the user state, 
whereas the USP can be accessed in the supervisor state 
by means of the instructions MOVE USP,An and 
MOVE An,USP. Figure 1 shows the register arrangements 
of the 68000. The program counter, status register, data 
registers and address registers A0-A6 are common to both 
operating modes. Only A7 is duplicated. 

All exception processing is carried out in the supervisor 
state, because an exception forces a change from user to 
supervisor state. Indeed, the only way of entering the 
supervisor state is by means of an exception. Figure 1 
shows how a transition is made between the 68000's two 
states. Note that an exception causes the S bit in the 
68000's status register to be set and the supervisor stack 
pointer to be selected at the start of the exception, with 
the result that the return address is saved on the supervisor 
stack and not on the user stack. The 68000 puts out a 
function code on its three function code pins, FC0-FC2, 
which informs any external memory management unit 
whether the CPU is accessing user or supervisory memory 
space. This enables the memory management unit to 

Any exception 
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Figure 1. State diagram of user and supervisor state 
transitions 

protect the supervisor's memory space from any illegal 
access by user programs. 

The change from supervisor to user state is made by 
clearing the S bit of the status register. This change is 
carried out by the operating system when it wishes to run 
a user program. Four instructions are available for this op- 
eration: RTE; MOVE.W < ea >, SR; ANDI.W #$XXXX, SR; 
and EORI.W #$XXXX, SR. The #$XXXX represents a 16- 
bit literal value in hexadecimal form. The RTE (return from 
exception) instruction terminates an exception handling 
routine and restores the value of the program counter and 
the old status register stored on the stack before the 
current exception was processed~ Consequently, if the 
68000 were in the user state before the current exception 
forced it into the supervisor state, an RTE would restore 
the processor to its old (ie user) state. 

In the user state, the programmer must not attempt to 
execute certain instructions. For example, the STOP and 
RESET instructions are not available to the programmer, 
because the RESET instruction forces the RESET* output of 
the 68000 low and resets any peripherals connected to 
this pin. Some of these peripherals may be in use by 
another program. The whole philosophy behind user and 
supervisor states is to prevent this type of thing from 
happening. Similarly, a STOP instruction has the effect of 
haltingthe processor until certain conditions are met, and 
is not allowed in the user state because a user program 
should not be allowed to bring the entire system to a 
standstill. 

Any instructions affecting the S bit in the upper byte of 
the status register (ie RTE; MOVE.W < ea>,SR; 
ANDI.W #$XXXX,SR; ORI.W #$XXXX,SR; EORI.W #$XXXX,SR) 
are also not permitted in the user mode. Note that no 
instruction that performs useful computation is barred 
from the user mode. Only certain system operations are 
privileged. 

Suppose a programmer tries to set the S bit by 
executing an ORI.W#$2OO0,SR; obviously, there is 
nothing to stop him/her from writing the instruction and 
running the program containing it. When the program is 
run, the illegal operation violates the user privilege by 
trying to enter the supervisor mode and forces an 
exception to be generated. This causes a change of state 
from user to supervisor, ie the 'punishment' for trying to 
enter the supervisor state is to be forced into it. 

In fact, the effect of attempting to execute an 
ORI.W #$2000,SR is to raise a software exception called a 
privilege violation, forcing a jump to a specific routine 
dealing with this type of exception. (The way in which 
exception states are entered and processed is dealt with 
below.) Once the exception handling routine dealing with 
the privilege violation has been entered, the user no 
longer controls the processor. The operating system has 
now taken over and it is highly probable that the 
exception handling routine will deal with the privilege 
violation by terminating the user's program. 

EXCEPTION TYPES 

There are a number of different exception types supported 
by the 68000, some of which are associated with external 
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hardware events such as interrupts, and some of which are 
associated with internally generated events such as 
privilege violations. Below is a list of the exception types 
currently implemented. The way in which these excep- 
tions are implemented is described later. 

Reset 

An externally generated reset is caused by bringing the 
RESET* and HALT* pins low for 10 clock pulses (or 100 ms 
on power up), and is used to place the 68000 in a known 
state at start up or following a totally irrecoverable system 
collapse. The reset is a unique exception, because there is 
no 'return from exception' following a reset. 

Bus error 

A bus error is an externally generated exception, initiated 
by hardware drivingthe 68000's BERR* pin active low. It is 
a 'catch-all' exception, because the systems designer may 
use it in many different ways, and it is provided to enable 
the processor to deal with hardware faults in the system. A 
typical use of the BERR* input is to indicate either a faulty 
memory access or an access to a nonexistent memory. 

Interrupt 

The 68000 has three interrupt request inputs, IPL0-1PL2, 
which are encoded and indicate one of seven levels of 
interrupt. To obtain maximum benefit from the interrupt 
request inputs, it is necessary to apply an eight-line to 
three-line priority encoder to convert one of seven 
interrupt request inputs from peripherals into a 3-bit 
code. The eighth code represents no interrupt request. 

Address error 

An address error exception occurs when the processor 
attempts to read a 16-bit word or a 32-bit Iongword at an 
odd address. Attempting to read a word at an odd address 
would require two accesses to memory - -  one to access 
the odd byte of an operand and the other to access the 
even byte at the next address. Address error exceptions 
are generated when the programmer makes a mistake. 
Consider the following fragment of code 

MOVEA.L #$7000,A0 (Load A0 with $00 7000) 
MOVE.B (A0) +,DO (Load DO with the byte pointed at by A0, and 

increment A0 by 1) 
MOVE.W (A0) +,DO (Load DO with the word pointed at by AO, and 

increment A0 by 2) 

The third instruction results in an address error because 
the previous operation, MOVE.B (A0) + DO, causes the 
value in A0 to be incremented from $7000 to $7001. 
Therefore when the processor attempts to execute 
MOVE.W (A0) +, DO it finds it is trying to access a word at 
an odd address. In many ways, an address error is closer to 

an exception generated by an event originating in the 
hardware than to one originating in the software. The bus 
cycle that leads to the address error is aborted, as the 
processor cannot complete the operation. 

Illegal instruction 

In 8-bit microprocessors, it was an intriguing diversion to 
find out what effect 'unimplemented' op. codes had on 
the processor. For example, if the value $A5 did not 
correspond to a valid op. code, an enthusiast would try 
and execute it and then see what happened. This was 
possible because the control unit (ie the instruction 
interpreter) of most 8-bit microprocessors was imple- 
mented by random logic. 

To reduce the number of gates in the control unit of the 
CPU, some manufacturers have not attempted to deal 
with illegal op. codes; after all, these are not supposed to 
be executed. In keeping with the 68000's approach to 
programming, an exception is generated whenever an 
operation code is read that does correspond to the bit 
pattern of the first word of one of the 68000's legal 
instructions. 

Divide by zero 

If a number is divided by zero, the result is meaningless 
and often indicates that something has gone seriously 
wrong with the program attempting to carry out the 
division. For this reason, the designers of the 68000 
decided to make any attempt to divide a number by zero 
an exception generating event. Good programs never try 
to divide a number by zero, so the divide-by-zero 
exception should not arise; it is intended merely as a 
failsafe device, to avoid the meaningless result that would 
occur if a number was divided by zero. 

CHK instruction 

The 'check register against bounds' instruction (CH K) has 
the assembly language form CHK < ea >,Dn, and has the 
effect of comparing the content of the specified data 
register with the operand at the effective address. If the 
lower-order word in the register, Dn, is negative, or is 
greater than the upper bound at the effective address, an 
exception is generated. For example, when the instruction 
CHK D1,D0 is executed, an exception is generated if 

[D0(0: 15)] < 0 

or 

[D0(0:15)] > [D1 (0:15)] 

The CHK instruction works only with 16-bit words, and 
therefore cannot be used with an address register as an 
effective address. The CHK exception has been included 
to help compiler writers for languages such as PASCAL 
which have facilities for the automatic checking of array 
indexes against their bounds. 

vol 10 no 4 may  1986 205 



TRAPV instruction 

When the 'trap on overflow' instruction (TRAPV) is 
executed, an exception occurs if the overflow bit, V, o~ 
the condition code register is set. Note that an exception 
caused by dividing a number by zero occurs auto-- 
matically, while TRAPV is an instruction equivalent to: 
IF V = 1 THEN exception ELSE continue. 

Privilege violation 

If the processor is in the user state (ie the S bit of the status 
register is clear) and it attempts to execute a privileged 
instruction, a privilege violation exception occurs. Apart 
from any instruction that attempts to modify the state of 
the S bit, the following three instructions cannot be 
executed in the user state: STOP;  RESET; 
MOVE < ea >,SR. 

Trace 

A popular method of debugging a program is to operate in 
a trace mode, in which the contents of all registers are 
printed out after each instruction has been executed. The 
68000 has an inbuilt trace facility. If the T bit of the status 
register is set, a trace exception is generated after each 
instruction has been executed. The exception handling 
routine called by the trace exception can be constructed 
to offer programmers any facilities they need. 

Line 1010 emulator 

Operation codes whose four most significant bits (bits 12- 
15) are 1010 or 1111 are unimplemented in the 68000, 
and therefore represent illegal instructions. However, the 
68000 generates a special exception for op. codes whose 
most significant nibble is 1010 (also called line ten). The 
purpose of this exception is to emulate instructions on 
future versions of the 68000. Suppose a version of the 
68000 is designed which includes floating point operations 
as well as the normal 68000 instruction set. Clearly, it is 
impossible to run code intended for the floating point 
processor on a normal 68000. But by using 1010 as the 
four most significant bits of each of the new floating point 
instructions, an exception is generated each time the 
68000 encounters one, and the line 1010 exception can 
emulate its more sophisticated counterpart. 

Line 1111 emulator 

The line 1111 (or line F) emulator behaves in almost 
exactly the same way as the line 1010 emulator, except 
that it has a different exception handling routine. 

Uninitialized interrupt vector 

The 68000 supports vectored interrupts, so that an 

interrupting device can identify itseif and allow the 08000 
to execute the appropriate interrupt handling routin~:. 
without havingto poll each device in turn. Before a devic( 
(:an identify itself, it must first be correctly configured b,~ ~ 
the programmer. If a 68000 series device is unconfigured 
and yet generates an interrupt, the 68000 responds b~ 
raising an 'uninitiated interrupt vector' exception. 68000 
series peripherals are designed to supply the initialize(! 
interrupt vector n umber ($0F) during an IACK cycle, if the~, 
have not been initialized by software. 

Spurious interrupt 

If the 68000 receives an interrupt request and sends an 
interrupt acknowledge, but no device responds, the CPL; 
generates a spurious interrupt exception. To implement 
the spurious interrupt exception, external hardware is 
required to assert BERR* following the nonappearance el 
either DTACK* or VPA* a reasonable time after an interrupt 
acknowledge has been detected. 

TRAP (software interrupt) 

l-he 68000 provides sixteen instructions of the form 
TRAP #I, where I = 0, I . . . . .  15. When this instruction is 
executed an exception is generated and one of sixteen 
exception handling routines called. Thus TRAP#0 
causes TRAP exception handling routine 0 to be called, 
and so on. 

The TRAP instruction is very useful. Suppose a program 
is written which is to run all 68000 systems. The greatest 
problem comes in dealing with input or output trans- 
actions. One 68000 system may deal with input in a very 
different way to every other 68000 system. However, if 
everybody agrees that, say TRAP #0 means input a byte 
and TRAP #I means output a byte, then the software 
becomes truly portable. All that remains to be done is for 
an exception handler to be written for each 68000 system 
to actually implement the input or output as necessa~. 

EXCEPTION VECTORS 

Having described the various types of exception supported 
by the 68000, the next step is to explain how the 
processor is able to determine the location of the 
corresponding exception handling routine. Every 
exception has a vector associated with it, and that vector 
is the 32-bit absolute address of the appropriate exception 
handling routine. All exception vectors are stored in a 
table of 512 words, extending from address $00 0000 to 
$00 03FF. 

A list of all the exception vectors is given in Table 1, and 
Figure 2 shows the physical location of the 512 vectors in 
memory. The left-hand column of Table 1 gives the vector 
number of each entry in the table. The vector number is a 
value which, when multiplied by four, gives the address, 
or offset, of an exception vector. For example, the vector 
number corresponding to a privilege violation is 8, and the 
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Table 1. Exception vectors and the 68000 

Vector Vector Address Exception type 
number (hex) space 

0 000 SP 

1 004 SP 

2 008 SD 
3 00C SD 
4 010 SD 
5 014 SD 
6 018 SD 
7 01C SD 
8 020 SD 
9 024 SD 

10 028 SD 
11 02C SD 
12 030 SD 
13 034 SD 
14 038 SD 
15 03C SD 
16 040 SD 

23 05C SD 
24 060 SD 
25 064 SD 
26 068 SD 
27 06C SD 
28 070 SD 
29 074 SD 
30 078 SD 
31 07C SD 
32 080 SD 
33 084 SD 

47 0BC SD 
48 0C0 SD 

63 0FC SD 
64 100 SD 

255 3FC SD 

R e s e t -  initial supervisor 
stack pointer 
Reset - -  initial program 
counter value 
Bus error 
Address error 
Illegal instruction 
Divide by zero 
CHK instruction 
TRAPV instruction 
Privilege violation 
Trace 
Line 1010 emulator 
Line 1111 emulator 
(Unassigned - -  reserved) 
(Unassigned - -  reserved) 
(Unassigned --  reserved) 
Uninitialized interrupt vector 
(Unassigned - -  reserved) 

(Unassigned --  reserved) 
Spurious interrupt 
Level 1 interru )t autovector 
Level 2 interru 
Level 3 interru 
Level 4 interru 
Level 5 interru 
Level 6 interru 
Level 7 interru 

~t autovector 
~t autovector 
~t autovector 
~t autovector 
~t autovector 
~t autovector 

TRAP #0 vector 
TRAP #1 vector 

TRAP #15 vector 
!Unassigned - -  reserved) 

(Unassigned --  reserved) 
User interrupt vector 

User interrupt vector 

appropriate exception vector is to be found at memory 
location 8 × 4 = 32 = $20. Therefore, whenever a privilege 
violation occurs, the CPU reads the Iongword at location 
$20 and loads it into its program counter. 

Although there are normally two words of memory 
space devoted to each 32-bit exception vector, as stated 
above, the reset exception (vector number 0) is a special 
case. The 32-bit Iongword at address $00 0000 is not the 
address of the reset handling routine, but the initial value 
of the supervisor stack pointer. The actual reset exception 
vector is at address $00 0004. Thus the reset exception 
takes four words of memory instead of the usual two. 

The first operation performed by the 68000 following a 
reset is to load the system stack pointer. This is important 

00 0000 

00 0002 

00 0004 

00 0006 

00 0008 

00 000A 

} Initial system stack pointer 
) 

} 
} Initial program counter 
} 

) 
} Bus error 
} 

00 03FC / 

00 03FE [ _ _  

Figure 2. 

} 
} User interrupt (last of 129) 
) 

Memory map of the 68000 vector table 

because, until a stack is defined, the 68000 cannot deal 
with any other type of exception. Once the stack pointer 
has been set up, the reset exception vector is loaded into 
the program counter and processing continues normally. 
The reset exception vector is, of course, the initial (or 'cold 
start') entry point into the operating system. 

There is yet another difference between the reset 
vector and all other exception vectors. The reset exception 
vector and the intial value of the supervisor stack pointer 
both lie in the supervisor program space, denoted bySP in 
Table 1. All other exception vectors lie in supervisor data 
space. 

USING THE EXCEPTION TABLE 

In any 68000 system, an exception vector table must be 
maintained in memory. Although the complete table is 
512 words (1024 byte) long, it is not necessary to fill it 
entirely with exception vectors. For example, if the system 
does not implement vectored interrupts, the memory 
space from $00 0100 to $00 03FF does not need to be 
populated with user interrupt vectors. It is a good idea to 
reserve the memory space $00 0000 to $00 03FF for the 
exception vector table unless forced to do otherwise, 
even if the whole of the table is not being used. All unused 
vectors can be preset to the spurious exception handling 
routine vector. This approach is in line with the philosophy 
of always providing a recovery mechanism for events 
which could possibly happen, and which would cause the 
system to crash if not adequately catered for. 

The 8-bit microprocessor also has its own vector 
table; these contain relatively few vectors corresponding 
to the limited exception handling facilities of most 8-bit 
devices. The table is invariably maintained in the same 
ROM that holds the processor's operating system or 
monitor. An advantage of putting exception vectors in 
ROM is that the table is always there immediately after 
power up, but a disadvantage is its inflexibility. Once a 
table is in ROM, the vectors cannot be modified to suit 
changing conditions• In practice, whenever a vector has to 
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be variable, 8-bit processors use a vector pointing to 
another table in read/write memory containing the actual 
exception handling vector. 

As the 68000 is so much more sophisticated than 8-bit 
devices and a dynamic or flexible response is sometimes 
required for the treatment of exception handling routines, 
the exception vector table is frequently held in read/write 
memory rather than in ROM. The operating system, held 
either in ROM or loaded from disc, sets up the exception 
vector table early in the initialization process following a 
reset. 

A problem here is the reset vector. The two things that 
must be in ROM are the reset vector and the system 
monitor or bootstrap loader. Clearly, when the system is 
powered up and the RESET* input asserted, the reset 
exception vector and supervisor stack pointer, loaded 
from $00 0004 and $00 0000 respectively, must be in 
ROM. At first sight, it might be thought that it is necessary 
to place the whole exception vector table in ROM, as it is 
not possible to get a four-word ROM just for the reset 
vector, and a (512 - 4)-word read/write memory for the 
rest of the table. Hardware designers have solved the 
problem by locating the exception vector table in read/ 
write memory and overlaying this with ROM whenever an 
access in the range $00 0000 to $00 0007 is made. 

Consider a situation in which 4 kbyte of memory in the 
range $00 0000-$00 0FFF are provided by read/write 
memory. As explained later, the region of RAM at 
$00 0000-$00 0007 cannot be accessed by the processor° 
Read/write memory extending from $00 0008 to $00 03 FF 
holds the exception vector table, which is loaded with 
vectors as dictated by the operating system. The remaining 
read/write memory from $00 0400 to $00 0FFF, is not 
restricted in use, and is freely available to the user or the 
operating system. 

The 4 kbyte of memory space from $00 1000 to 
$00 1FFF is populated by ROM. The first 8 byte of this 
ROM, from $00 1000 to $001007, contains the reset 
vectors. It is necessary to arrange the hardware of the 
68000 system so that a read access to the reset vectors 
automatically fetches them from the ROM rather than the 
read/write memory. One way of achieving this is demon- 
strated by the circuit in Figure 3. The read/write memory 
and ROM elements are supplied by conventional 
2k X 8 bit chips, and their circuitry is entirely straight- 
forward. Read/write memory is selected when CSRAM* is 
active low, and ROM when CSROM* is active low. 
Whenever an access is made to the region $00 0000- 
$00 0007, the output of IC6 (RVEC*) goes active low. The 
effect of this is to deselect the read/write memory and to 
select the ROM containing the reset vectors. 

EXCEPTION PROCESSING 

The 68000 responds to an exception in four identifiable 
phases. 

In phase one, the processor makes a temporary 
internal copy of the status register and modifies the 
current status register ready for exception processing. This 
involves setting the Sbit and clearing the Tb i t  (ie 

trace bit). The S bit is set because all exception processing 
takes place in the supervisor mode. The T bit is cleared 
because it is undesirable to have the processor in the trace 
mode during exception processing. (The trace mode 
forces an exception after the execution of each instruction. 
If the T bit were set, an instruction would trigger a trace 
exception which would, in turn, cause a trace exception 
after the first instruction of the trace handling routine had 
been executed. In this way an infinite series of exceptions 
would be generated.) Two specific types of exception 
have a further effect on the contents of the status word. 
After a reset, the interrupt mask bits are automatically set 
to indicate an interrupt priority of level 7. An interrupt 
causes the interrupt priority to be set to the same value as 
the interrupt currently being processed. 

In phase two, the vector number corresponding to the 
exception being processed is determined. Apart from 
interrupts, the vector number is generated internally by 
the 68000 according to the exception type. If the 
exception is an interrupt, the interrupting device places 
the vector number on data lines DO0-D07 of the 
processor data bus during the interrupt acknowledge 
cycle, signified by a function code (FC2, FC1, FC0) of 1, 1,1 
Once the processor has determined the vector number, 
it multiplies it by four to extract the location of the 
exception processing routine within the exception vector 
table. 

In phase three, the current 'CPU context' is saved on 
the system stack. The CPU context is all the information 
required by the CPU to return to normal processing after 
an exception. Phase three of the exception processing is 
complicated by the fact that the 68000 divides exceptions 
into two categories, and saves different amounts of 
information accordingto the nature of the exception. The 
information saved bythe 68000 is called the 'most volatile. 
portion of the current processor context', and is saved in a 
data structure called the exception stack frame. 

Figure 4 shows the structure of the exception stack 
frame. Note that exceptions are classified into three 
groups. The information saved during group 1 or group 2 
exceptions is only the program counter (two words) and 
the status register, temporarily saved during phase one. 
This is the minimum of information required by the 
processor to restore itself to the state it was in prior to the 
exception. 

The three groups of exception are categorized in 
Table 2. A group 0 exception originates from hardware 
errors (the address error has all the characteristics of a bus 
error but is generated internally by the 68000) and often 
indicates that something has gone seriously wrong with 
the system. For this reason the information saved in the 
stack frame corresponding to a group 0 exception is more 
detailed than that for groups 1 and 2. Figure 4b shows the 
stack frame of group 0 exceptions. 

The additional information saved in the stack frame by 
a group 0 exception is a copy of the first word of the 
instruction being processed at the time of the exception 
and the 32-bit address that was being accessed by the 
aborted memory access cycle. The third new item saved is 
a 5-bit value giving the function code which was 
displayed on FC2, FC1 and FC0 when the exception 
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Figure 4. Stack frames: a, for group 1 and group 2 
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occurred, together with an indication of whether the 
processor was executing a read or a write cycle, and 
whether is was processing an instruction or not. This is 
diagnostic information which may be used by the 
operating system when dealing with the cause of the 
exception. 

The fourth and final phase of the exception processing 
sequence consists of a single operation - -  the loading of 
the program counter with the 32-bit address pointed at by 
the exception vector. Once this has been done, the 
processor continues executing instructions normally. 

When an exception handling routine has been run to 
completion, the instruction 'return from exception' (RTE) 
is executed to restore the processor to the state it was in 
prior to the exception. RTE is a privileged instruction and 
has the effect of restoring the status register and program 
counter from the values saved on the system stack. The 
contents of the program counter and status register, just 

Table 2. Exception grouping according to type and 
priority 

Group Exception type Time at which processing 
begins 

0 Reset 
Bus error 
Address error 

1 Trace 
Interrupt 
Illegal op. code 
Privilege 

2 TRAP 
TRAPV 
CHK 
Divide by zero 

Exception processing begins 
within two clock cycles 

Exception processing begins 
before the next instruction 

Exception processing is 
by normal instruction 
execution 

prior to the execution of the RTE, are lost. RTE cannot be 
used after a group 0 exception to execute a return. 

The second part of this paper, to be published in 
Microprocessors MicrosysL Vol 10 No 5 (June 1986), looks 
at the way in which interrupt handling is actually 
implemented in the 68000. 
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Exception handling in the 68000, Part 2 

In the second of two tutorial papers, Alan Clements examines in detail the 
implementation of hardware and software initiated exceptions on the 68000, with 

particular emphasis on interrupts 

The paper discusses the implementation by the 68000 
microprocessor of hardware and software initiated 
exceptions. The three categories of hardware exception - -  
resets, bus errors and interrupts ~ are covered first, with 
detailed discussion of how vectored and autovectored 
interrupts are processed. The software initiated exceptions 
discussed are illegal operation codes, traces, emulator- 
mode exceptions and traps. An example of the use of a trap 
handler is given. 

microprocessors exceptions interrupts 68000 

Part 1 of this paper 1 introduced the concept of the 
exception, a mechanism employed by computers to deal 
with certain events. These events cannot easily be 
handled by normal 'inline' programming techniques and 
require the processor to temporarily interrupt its normal 
processing. Part 2 of the paper examines how the 68000 
implements asynchronous exceptions, and introduces 
the software exception. 

HARDWARE INITIATED EXCEPTIONS 

Three types of exception are initiated by events taking 
place outside the 68000 and are communicated to the 
CPU via its input pins; they are the reset, the bus error and 
the interrupt. Each of these three exceptions has a direct 
effect on the hardware design of a 68000-based micro- 
computer. This section examines each of these systems in 
more detail, beginning with a look at the control of the 
RESET* pin. 

Reset 

It was stated in Part 1 of the paper 1 that the exception 
vector table is frequently located in read/write memory, 
and that the circuit shown in Figure 3 of Part I can be used 
to overlay the first 8 byte of the read/write memory with 
ROM containing the reset vectors. The only other circuitry 
associated with the 68000's reset mechanism is that 
connected to the RESET* pin itself. 

The designers of the 68000 have made RESET* a 
bidirectional I /0,  which complicates the design of the 
reset circuitry. In normal operation the RESET* pin is an 

Department of Computer Science, Teesside Polytechnic, Middlesbrough, 
Cleveland TS1 3BA, UK 

input. Almost all microprocessor systems connect every 
device that can be reset to the RESET* pin. This means that 
all devices are reset along with the 68000 at power up or 
following a manual reset. The 68000 is also capable of 
executing a software reset instruction which forces its 
RESET* pin active low, resetting all devices connected to 
it. This facility was provided to permit a system reset 
under software control that does not affect the processor 
itself. Consequently the RESET* pin of the 68000 cannot 
be driven by gates with active pull-up circuits. RESET* 
must be driven by open-collector or open-drain outputs. 

Another aspect to note about hardware initiated 
resets is that both RESET* and HALT* must be asserted 
simultaneously. Like RESET*, the HALT* pin is bidirectional 
and must also be driven by an open-collector or open- 
drain output. If RESET* and HALT* are asserted together 
following a system crash, they must be held low for at least 
10 clock cycles to ensure satisfactory operation. However, 
at power up they must be held low for at least 100 ms after 
the Vcc supply to the 68000 has become established. 

A possible arrangement of a reset circuit for the 68000 
is given in Figure 5. IC1, a 555 timer, generates an active- 
high pulse at its output terminal shortly after the initial 
application of power. The timer is configured to operate 
in an astable mode, generating a single pulse whenever it 
is triggered. The time constant of the output pulse (ie the 
duration of the reset pulse) is determined by resistor R2 
and capacitor C2. R1 and C1 trigger the circuit on the 
application of power. The output is buffered and inverted 
by IC2a to become the system active-low power-on-reset 
pulse (POR*), which can be used by the rest of the 
system as appropriate. A pair of crosscoupled NAND 
gates provides a manual reset facility. 

+5__ IC2 

I Vc c ~ o l i '  ~__ ~_~-.~4..~ b/ HALT" ,~Trigger| ICI Trigger(555) / (68000) 
/GND Threshold ~Z~C3 I 5 {~>6 l ~  RESET" 

0"I~F,~C, 1 ~ T =0 ,02 --"(68000) 
[.47 ,u F 

G N D ~  

1 "- & > 6  ] 

74LS00 

0141-9331/86/05258-10 $03.00 © 

IC2 is an open-collector buffer 

Figure 5. Control of RESET* in a 68000-based system 
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B u s  er ror  

A bus error is an exception raised in response to a failure 
by the system to complete a bus cycle. As there are many 
possible failure modes, the details of each depending on 
the type of hardware used to implement the system, the 
detection of a bus error is left to the systems designer 
rather than to the 68000 itself. All the 68000 provides is an 
active-low input, BERR*, which generates a bus error 
exception when asserted. 

Figure 6 gives the timing requimments that the BERR* 
input must satisfy. To be recognized during the current 
bus cycle, BERR* must fulfil one of two conditions: it must 
either be asserted at least time tAsl (the asynchronous 
input set-up time) before the falling edge of state S4; or it 
must be asserted at least time tBELDAL (BERR* low to 
DTACK* low) before the falling edge of DTACK*. It is 
necessary to maintain BERR* active low until time t.SHBEH 
(AS* high to BERR* high) after the address and data strobes 
have become inactive. The minimum value of tSHBE H is 
zero, implying that BERR* may be negated concurrently 
with AS* or LDS*/UDS*. It is important to realize that, if 
BERR* meets the timing requirement t~l, it will be 
processed in the current bus cycle irrespective of the state 
of DTACK*. 

There are a number of reasons why BERR* may be 
asserted in a system. Typical applications of BERR* are as 
follows. 

• Illegal memory access. If the processor tries to access 
memory at an address not populated by memory, 
BERR* may be asserted. BERR* may also be asserted if 
an attempt is made to write to a read-only memory 
address. The decision as to whether to assert BERR* in 
these cases is a design decision. (All 8-bit micro- 
processors are quite happy to access nonexistent 
memory or to write to ROM!) The philosophy of 68000 
systems design is to trap events which may lead to 
unforeseen circumstances. If the processor tries to 
write to ROM, the operating system can intervene 
because of the exception raised by BERR*. 

• Faulty memory access. If error-detecting memory is 
employed, a read access to a memory location at 

S3 $4 

CLOCK _ ~ ~  
: i 

i ~ s l  i 

BERR" i 

: ! 

DTACK- :i i 
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Figure 6. Bus error 
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: t 

:tSHBE H • 

input (BERR*) timing diagram: 
t4sl = 20 ns (min.); tBELDAL = 20 ns (rain.); tSHBE H = 0 ns 
(rain.) 

which an error is detected can be used to assert BERR*. 
In this way the processor will never try to process data 
that is in error due to a fault in the memory. 
Failure to assert valid peripheral address (VPA*). If the 
processor accesses a synchronous bus device and 
VPA* is not asserted after some time-out period, BERR* 
must be asserted to stop the system hanging up and 
waiting for VPA* forever. 
Memory privilege violation. When the 68000 is used in 
a system with some form of memory management, 
BERR* may be asserted to indicate that the current 
memory access is violating a privilege. This may be an 
access by one user to another user's program. In a 
system with virtual memory, it may result from a page 
fault, indicating that the data being accessed is not 
currently in read/write memory. 

Bus error sequence 

When BERR* is asserted by external logic and satisfies its 
set-up timing requirements, the processor negates AS* in 
state S6. As long as BERR* remains asserted the data and 
address buses are both floated. When the external logic 
negates BERR*, the processor begins a normal exception 
processing sequence for a Group 0 exception. Figure 4b 
(Part 1 of the paper I) shows that additional information is 
pushed onto the system stack to facilitate recovery from 
the bus error. Once all phases of the exception processing 
sequence have been completed, the 68000 begins to 
deal with the problem of the error in the BERR* exception 
handling routine. It must be emphasized that the 
treatment of the hardware problem which led to the bus 
error takes place at a software level within the operating 
system. For example, if a user program generates a bus 
error, the exception processing routine may abort the 
user's program and provide him/her with diagnostic 
information to help deal with the problem. The infor- 
mation stored on the stack by a bus error exception (or an 
address error) is to be regarded as diagnostic information 
only and should not be used to institute a retum from 
exception. In other words, the 68000 does not support a 
return from a Group 0 exception (although the 68010 
does). 

Rerunning the bus cycle 

It is possible to deal with a bus error in a way which does 
not involve an exception. If, during a memory access, the 
external hardware detects a memory error and asserts 
both BERR* and HALT* simultaneously, the processor 
attempts to rerun the current bus cycle. 

Figure 7 illustrates a rerun cycle. A bus fault is detected 
in the read cycle and both BERR* and HALT* are asserted 
simultaneously. As long as the HALT* signal remains 
asserted, the address and data buses are floated and no 
external activity takes place. When HALT* is negated by 
the external logic, the processor will rerun the previous 
bus cycle using the same address, the same function 
codes, the same data (for a write operation) and the same 
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control signals. For correct operation, the BERR* signal 
must be negated at least one clock cycle before HALT* is 
negated. 

A possible implementation of bus error control in a 
sophisticated 68000-based system might detect a bus 
error and assert BERR* and HALT* simultaneously. The 
rising edge of AS* can be used to release BERR* and HALT* 
at least one clock cycle later. This guarantees a rerun of the 
bus cycle. Of course, if the error is a 'hard' error (ie is 
persistent), rerunning the bus cycle will achieve little and 
external logic will once again detect the error. A reasonable 
strategy would be to permit, say, three reruns and assert 
BERR* alone on the next cycle, forcing a conventional bus 
error exception. 

Interrupt 

As discussed in Part 11, an interrupt is a request for service 
generated by some external peripheral, which the 68000 
implements within the framework of its overall exception 
handling procedures. The 68000 offers two schemes for 
dealing with interrupts. One is intended for peripherals 
specifically designed for 16-bit processors, while the 
other is more suited to earlier 8-bit (6800 series) peri- 
pherals. 

An external device signals its need for attention by 
placing a 3-bit code on the 68000's interrupt request 
inputs (IPL0*, IPL1 * and IPL2*). The code corresponds to 
the priority of the interrupt and is numbered from 0 to 7. A 
level 7 code indicates the highest priority, level 1 the 
lowest priority and level 0 the default state of no interrupt 
request. While it would be possible to design peripherals 
with three interrupt request output lines on which they 
put a 3-bit interrupt priority code, it is easier to have a 

single interrupt request output and to design external 
hardware to convert its priority into a 3-bit code suitable 
for the 68000. 

Figure 8 shows a typical scheme for handling interrupt 
requests in a 68000 system. A 741_5148 eight-line to three- 
line priority encoder is all that is needed to translate one 
of the seven levels of interrupt request into a 3-bit code. 
Table 3 gives the truth table for this device. Input El* is an 
active-low enable input, used in conjunction with outputs 
GS and EO to expand the 74LS148 in systems with more 
then seven levels of priority. 

As the enable input and expanding outputs are not 
needed in this application of the 74LS148, Table 3 has 
been redrawn in Table 4 with inputs 1-7 renamed IRQ1 *- 
IRQ7*, respectively, and outputs A0-A2 renamed 
IPL0*-IPL2*. It must be appreciated that all inputs and all 
outputs are active low, so that an output value 0, 0, 0 
denotes an interrupt request of level 7, while an output 1, 
1, 1 denotes a level 0 interrupt request (ie no interrupt). 

Inspecting Table 4 reveals that a logical zero on 
interrupt request input i forces interrupt request inputs 1 
to i -  1 into 'don't care' states (ie if interrupt IRQi* is 
asserted, the state of interrupt request inputs IRQI* to 
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Figure 8. Interrupt request encoding 

Table3. Truth table for the 74LS148 eight-line to 
three-line priority encoder 

Inputs Outputs 

El* 0 1 2 3 4 5 6 7 A2 A1 A0 GS E0 

1 X X X X X X X X  1 1 1 1 1 
0 I I I I I I I I  1 1 1 1 0 
0 X X X X X X X O  0 0 0 0 1 
0 X X X X X X O I  0 0 1 0 1 
0 X X X X X O I I  0 1 0 0 1 
0 X X X X O l l l  0 1 1 0 1 
0 X X X O l l l l  1 0 0 0 1 
0 X X O I I I I I  1 0 1 0 1 
0 X O l l l l l l  1 1 0 0 1 
0 0 1 1 1 1 1 1 1  1 1 1 0 1 

0 = low-level signal (< VIL); 1 = high-level signal (> VIH); 
X = 'don't care' 
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Table 4. Truth table for a 74LS148 configured as in Figure 8 

Inputs 

Level I RQI * I RQ2* I RQ3* I RQ4* I RQS* I RQ6* 

Outputs 

IRQ7* IPL2* IPL1 * IPLO* 

7 X X X X X X 
6 X X X X X 0 
5 X X X X 0 1 
4 X X X 0 1 1 
3 X X 0 1 1 1 
2 X 0 1 1 1 1 
1 0 1 1 1 1 1 
0 1 1 1 1 1 1 

0 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

0 = low-level signal (< VIID; 1 = high-level signal (> VIH); X = 'don't care' 

I R Q [ i - 1 ] *  has no effect on the output code IPL0*- 
IPL2*). It is this property that the microprocessor systems 
designer relies on. Devices with high-priority interrupts 
are connected to the higher-order inputs. Should two or 
more levels of interrupt occur simultaneously, only the 
higher value is reflected in the output code to the 68000's 
IPL pins. 

Figure 8 demonstrates that the 74LS148 does not 
restrict the system to only seven devices capable of 
generating interrupt requests. More than one device can 
be wired to a given level of interrupt request as illustrated 
by peripherals 2 and 3. If peripheral 2 or 3 (or both) asserts 
its interrupt request output (IRQ*), a level 2 interrupt is 
signalled to the 68000, provided that levels 3-7 are all 
inactive. The mechanism used to distinguish between an 
interrupt from peripheral 2 and one from peripheral 3 is 
called 'daisychaining' and enables several devices to 
share the same level of interrupt priority while permitting 
only one of them to respond to an lACK cycle. Daisy- 
chaining is implemented by feeding the lACK* response 
from the CPU into the first peripheral in the daisychain. 
When an lACK cycle is executed, the first peripheral 
receives the lACK* signal from the CPU. If this peripheral 
generated the interrupt, it responds to the lACK*. If it did 
not generate the interrupt, it passes the lACK* signal onto 
the next peripheral in the chain. Note that, in this 
arrangement, each peripheral requires an IACK__IN* pin 
and an IACK__OUT* pin. 

Processing the interrupt 

All interrupts to the 68000 are latched internally and made 
pending. Group 0 exceptions (reset, bus error, address 
error) take precedence over an interrupt in Group 1. 
Therefore, if a Group 0 exception occurs, it is serviced 
before the interrupt. A trace exception in Group 1 takes 
precedence over the interrupt, so that if an interrupt 
request occurs during the execution of an instruction 
while the T bit is asserted, the trace exception has priority 
and is serviced first. Assuming that none of the above 
exceptions have been raised, the 68000 compares the 
level of the interrupt request with the value recorded in 
the interrupt mask bits of the processor status word. 

If the priority of the pending interrupt is lower than or 

equal to the current processor priority denoted by the 
interrupt mask, the interrupt request remains pending and 
the next instruction in sequence is executed. Interrupt 
level 7 is treated slightly differently, as it is always 
processed regardless of the value of the interrupt mask 
bits (ie a level 7 interrupt always interrupts a level 7 
interrupt if one is currently being processed). Any other 
level of interrupt can be interrupted only by a higher level 
of priority. Note that a level 7 interrupt is edge sensitive 
and is interrupted only by a high-to-low transition on 
I RQ7*. 

Once the processor has made a decision to process an 
interrupt, it begins an exception processing sequence as 
described earlier. The only deviation from the normal 
sequence of events dictated by a Group 1 or Group 2 
exception is that the interrupt mask bits of the processor 
status word are updated before exception processing 
continues. The level of the interrupt request being 
serviced is copied into the current processor status. This 
means that the interrupt cannot be interrupted unless the 
new interrupt has a higher priority. 

Example. Suppose that the current (ie pre-interrupt) 
interrupt mask is level 3. If a level 5 interrupt occurs, it is 
processed and the interrupt mask is setto level 5. If, during 
the processing of this interrupt, a level 4 interrupt is 
requested, it is made pending even though it has a higher 
priority than the original interrupt mask. When the level 5 
interrupt has been processed, a return from exception is 
made and the former processor status word is restored. As 
the old interrupt mask was level 3, the pending interrupt 
of level 4 is then serviced. 

Unlike other exceptions, an interrupt may obtain its 
vector number extemally from the device that made the 
interrupt request. As stated above, there are two ways of 
identifying the source of the interrupt, one vectored and 
one autovectored. 

Vectored interrupt 

After the processor has completed the last instruction 
before recognizingthe interrupt and stacked the low-order 
word of the program counter, it executes an interrupt 
acknowledge cycle (lACK cycle). During an lACK cycle, 
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the 68000 obtains the vector number from the interrupting 
device, with which it will later determine the appropriate 
exception vector. 

Figure 9 shows the sequence of events taking place 
during an lACK cycle; it can be seen that an lACK cycle is 
just a modified read cycle. Because the 68000 puts out the 
special function code 1, 1, 1 on FC2, FC1 and FC0 during 
an lACK cycle, the interrupting device is able to detect the 
lACK cycle. At the same time, the level of the interrupt is 
put out on address lines A01-A03. The lACK cycle should 
not decode memory addresses AO4-A23 and memory 
components should be disabled when FC2-FC0 = 1,1,1. 
The device that generated the interrupt at the specified 

Processor Interrupting device 

I Request interrupt 

t 
Grant interrupt request 

(1) P~ace interrupt level 
on A01 ,A02,A03. 
All other address 
lines high 

(2) Set R/W to read 
(3) Set FC to interrupt 

acknowledge 
(4) Assert AS* 
(5) Assert lower and 

upper data strobes 

t 
t 

Provide interrupt vector 

(1 } Place data on 
D00-D07 

(2) Assert DTACK* 

t 
Acquire vector number 

(1) Latch vector number 
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Release bus 

Negate DTACK* 

The interrupt acknowledge sequence 

level then provides a vector number on DOO-D07 and 
asserts DTACK*, as in any normal read cycle. The 
remainder of the lACK cycle is identical to a read cycle. 
Figure 10 gives the timing diagram of an lACK cycle. Note 
that the lACK cycle falls between the stacking of the low- 
order word of the program counter and the stacking of the 
high-order word. 

After the peripheral has provided a vector number on 
D00-D07, the processor multiplies it by four to obtain the 
address of the entry point to the exception processing 
routine from the exception vector table. Although a 
device can provide an 8-bit vector number giving 256 
possible values, there is space reserved in the exception 
vector table for only 192 unique vectors. This is more than 
adequate for the vast majority of applications. (However, 
a peripheral can put out vector numbers 0-63, as there is 
nothing to stop these numbers being programmed into 
the peripheral and the processor does not guard against 
this situation. In other words, if a programmer programs a 
peripheral to respond to an lACK cycle with, say, a vector 
number 5, then an interrupt from this device would cause 
an exception corresponding to vector number 5 - -  the 
value also appropriate to a divide-by-zero exception. 
While at times this might be useful, it seems an oversight 
to allow interrupt vector numbers to overlap with other 
types of exceptions.) 

A possible arrangement of hardware needed to 
implement a vectored interrupt scheme is given in Figure 
11. A peripheral asserts its interrupt request output, 
IRQ5*, which is encoded by IC3 to provide the 68000 
with a level 5 interrupt request. When the processor 
acknowledges this request, it places 1,1,1 on the function 
code output, which is decoded by the three-line to eight- 
line decoder IC1. The interrupt acknowledge output 
(lACK*) from IC1 enables a second three-line to eight-line 
decodbr, IC2, which decodes address lines AO1-A03 
into seven levels of interrupt acknowledge. In this case, 
lACK5* from IC2 is fed back to the peripheral, which then 
responds by placing its vector number onto the low-order 
byte of the system data bus. If the peripheral has not been 
programmed to supply an interrupt vector number it 
should place $0F on the data bus, corresponding to an 
uninitialized interrupt vector exception. 
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Figure 11. Implementing the vectored interrupt 

Autovectored interrupt 

As set out above, a device which generates an interrupt 
request must be capable of identifying itself when the 
68000 carries out an interrupt acknowledge sequence. 
This presents no problem for modern 68000-based 
peripherals such as the 68230 parallel interface-timer. 

Unfortunately, older peripherals originally designed for 
8-bit processors do not have interrupt acknowledge 
facilities and are unable to respond with the appropriate 
vector number on D00-D07 during an lACK cycle. The 
systems designer could overcome this problem by 
designing a subsystem which supplied the appropriate 
vector as if it came from the interrupting peripheral. Such an 
approach is valid but a little messy: a single-chip 
peripheral would need several components just to 
provide a vector number in an lACK cycle. 

An alternative scheme is available for peripherals that 
cannot provide their own vector numbers. An lACK cycle, 
like any other memory access, is allowed to continue to 
state $5 by the assertion of DTACK*. If, however, DTACK* 
is not asserted but VPA* is asserted, the 68000 carries out 
an autovectored interrupt. 

Valid peripheral address, VPA*, belongs to the 68000's 
synchronous data bus control group of signals. When 
asserted, VPA* informs the 68000 that the present 
memory access cycle is to be synchronous and to 'look 
like' a 6800 series memory access cycle. If the current bus 

cycle is an lACK cycle, the 68000 executes a 'spurious 
read cycle', ie an lACK cycle is executed but the 
interrupting device does not place a vector number on 
D00-D07. Nor does the 68000 read the contents of the 
data bus; instead, it generates the appropriate vector 
number internally. 

The 68000 reserves vector numbers 25-31 (decimal) 
for its autovector operation (see Table 1). Each of these 
autovectors is associated with an interrupt on IRQI*- 
IRQ7*. For example, if IRQ2* is asserted followed by VPA* 
during the lACK cycle, vector number 26 is generated by 
the 68000 and the interrupt handling routine address read 
from memory location $000068. 

Should several interrupt requesters assert the same 
interrupt request line, the 68000 will not be able to 
distinguish between them. The appropriate interrupt 
handling routine must poll each of the possible devices in 
turn (ie the status register of each peripheral must be read 
to determine the source of the interrupt). 

The timing diagram of an autovector sequence is given 
in Figure 12 and is almost identical to the vectored lACK 
sequence of Figure 10, except that VPA* is asserted shortly 
after the interrupter has detected an lACK cycle from 
FC0-FC2. Because VPA* has been asserted, wait states 
are introduced into the current read cycle in order to 
synchronize the cycle with VMA*. Note that this is a 
dummy read cycle as nothing is read. (The autovector is 
generated internally and no device places data on D00- 
D07 during the cycle.) 

The hardware necessary to implement an autovectored 
interrupt is minimal. Figure 13 shows a possible arrange- 
ment involving a typical 6800 series peripheral which 
requests an interrupt in the normal way by asserting its 
IRQ* output. This is prioritized by IC3 and an acknowledge 
signal is generated by ICs 1 and 2. 

The interrupting device cannot, of course, respond to 
an lACK* signal. Instead, the appropriate interrupt 
acknowledge signal from the 68000 is combined with the 
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needed to implement an 

\ 
interrupt request o~Jtput from the peripheral in an OR 
gate. Only when the peripheral has asserted its IRQ* and 
the correct level of lACK* has been generated does the 
output of the OR gate go low to assert VPA* and force an 
autovectored interrupt. 

S O F T W A R E  IN IT IATED E X C E P T I O N S  

A software initiated exception is one that occurs as the 
result of an attempt to execute certain types of instruction 
(not the address error which is classified as a hardware 
initiated interrupt). Software initiated interrupts fall into 
two categories: those executed deliberately by the 
programmer and those representing a 'cry for help'. 

The 'help' group comprises the illegal op. code, 
privilege violation, TRAPV and divide-by-zero exceptions. 
These are all exceptions that are normally generated by 
something going wrong; therefore the operating system 
needs to intervene and sort things out. The nature of this 
intervention is very much dependent on the structure of 
the operating system. Often, in a multiprogramming 
environment, the individual task creating the exception 
will be aborted, leaving all other tasks unaffected. 

Software exceptions initiated by the programmer are 
the trace, the trap and the emulator. The trace exception 
mode is in force whenever the T bit of the status word is 
set. After each instruction has been executed, a trace 
exception is automatically generated if the T bit is set. This 
is done to allow the user to monitor the execution of a 
program. 

Illegal op. code except ions 

Consider the illegal op. code exception. This is raised 
when the 68000 attempts to execute an op. code that 
does not form part of the 68000's instruction set. The only 
way that this can happen is when something has gone 
seriously w rong - -an  op. code has been corrupted in 
memory or a jump has been made to a region containing 
nonvalid 68000 code. The latter event frequently results 
from wrongly computed GOTOs. Clearly, once such an 
event has occurred, it is futile to continue trying to 
execute further instructions as they have no real meaning. 
By generating an illegal op. code exception, the operating 
system can inform users of the problem and invite them 
to do something about it. 

Trace except ions 

The simplest trace facility would allow the user to dump 
the contents of all registers on the CRT terminal after the 
execution of each instruction. Unfortunately, this leads to 
the production of vast amounts of utterly useless 
information. For example, if the 68000 were executing an 
operation to clear an array by executing a CLR.L (A4)+ 
instruction 64ktimes, the human operatorwould not wish 
to see the contents of all registers displayed after the 
execution of each CLR. 

A better approach is to display only the information 
needed. Before the trace mode is invoked, the user 
informs the operating system of the conditions under 
which the results of a trace exception are to be displayed. 
Some of the events which can be used to tdgger the 
display of registers during a trace exception are 

• execution of a predefined number of instructions (eg 
contents of registers may be displayed after, say, 50 
instructions have been executed) 

• execution of an instruction at a given address (equi- 
valent to a break point) 

• execution of an instruction falling within a given range 
of addresses, or the access of an operand falling within 
the same range 

• as last event, but with the contents of the register 
displayed only when an address generated by the 
68000 falls outside the predetermined range 

• execution of a particular instruction (eg contents of the 
registers may be displayed following the execution of a 
TAS instruction) 

• any memory access which modifies the contents of a 
memory location (ie any write access) 
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It is possible to combine several of the above conditions 
to create a composite event. For example, the contents of 
registers may be displayed whenever the 68000 executes 
write accesses to the region of memory space between 
$3A 0000-$3A 00FF. 

Emulator-mode exceptions 

Emulator-mode exceptions provide the systems designer 
with tools to develop software for new hardware before 
that hardware has been fully realized. Suppose a company 
is working on a coprocessor to generate the sine of a 16- 
bit fractional operand. For commercial reasons, it may be 
necessary to develop software for this hardware long 
before the coprocessor is in actual production. 

By inserting an emulator op. code (ie an exception call) 
at the point in a program at which the sine is to be 
calculated by the hardware, the software can be tested as 
if the coprocessor were actually present. When the 
emulator op. code is encountered, a jump is made to the 
appropriate emulator handling routine. In this routine, the 
sine is calculated by conventional techniques. 

Trap exception 

The trap is the most useful software user initiated 
exception available to the programmer. Indeed, it is one 
of the more powerful functions provided by the 68000. 
There are no significant differences between traps and 
emulator exceptions; they differ only in their applications. 
There are sixteen traps, TRAP #0-TRAP //15, which are 
associated with exception vector numbers 32-47 
(decimal) respectively. 

Just as emulator exceptions are used to provide 
functions in software that will later be implemented in 
hardware, trap exceptions create new operations or 'extra 
codes' not provided directly bythe 68000 itself. However, 
the purpose of the trap is to separate the details of certain 
'housekeeping' functions from the user- or applications- 
level program. 

Consider I/O transactions. These involve real hardware 
devices and the precise nature of an input operation on 
system A may be very different from that on system B, 
even though both systems put the input to the same use. 
System A may operate a 6850 ACIA in an interrupt-driven 
mode to obtain data, while system B may use in Inte18055 
parallel port in a polled mode to carry out the same 
function. Clearly, the device drivers (ie the software which 
controls the ports) in these systems differ greatly in their 
structures. 

Applications programmers do not wish to consider the 
fine details of I/O transactions when writing their 
programs. One solution is to use a jump table and to 
thread all I/O through this table. Table 5 illustrates this 
approach. It can be seen that the applications programmer 
deals with all device-dependent transactions by indirect 
jumps through a jump table. For example, all console 
input at the applications level is carded out by BSR 
GETCHAR. At the address GETCHAR in the jump table, 

the programmer inserts a link (JSR INPUT) to the actual 
routine used in his/her own system. 

This is a perfectly acceptable approach to the problem 
of device dependency. Unfortunately, it suffers from the 
limitation that the applications program must be tailored 
to fit on to the target system. This is done by tagging on 
the jump table. An alternative approach, requiring no 
modification whatsoever to the applications software, is 
provided by the trap exception. This leads to truly system- 
independent software. 

When a trap is encountered, the appropriate vector 
number is generated and the exception vector table 
interrogated to obtain the address of the trap handling 
routine. Note that the exception vector table fulfils the 
same role as the jump table (Table 5). The difference is 
that the jump table forms part of the applications program 
while the exception vector table is part of the 68000's 
operating system. 

An example of a trap handler is found on the Motorola 
educational single board (ECB) computer. This is known 
as the 'TRAP #14 handler' and provides the user with a 
method of accessing functions within the ECB's monitor 
software without the user having to know their addresses. 

The versatility of a trap exception can be increased by 
passing parameters from the user program to the trap 
handler. The TRAP #14 handler of Tutor (the monitor on 
the Motorola ECB) provides for up to 255 different 
functions to be associated with TRAP//14. Before the trap 
is invoked, the programmer must load the required 
function code into the least significant byte of DT. For 
example, to transmit a single ASCII character to port 1, the 
following calling sequence is used. 

OUTCH EQU 248 (Equate the function 
code to name of 
activity) 

MOVE.B #OUTCH, D7 (Load function code 
in D7) 

TRAP #14 (Invoke TRAP #14 
handler) 

Table 6 gives a list of the functions provided by the TRAP 
#14 exception handler of the Tutor monitor on the ECB. 

Table 5. The jump table 

ORG $001000 Jump table 
GETCHAR JMP INPUT 
OUTCHAR JMP OUTPUT INPUT, OUTPUT 
GETSECTOR JMP D I S L I N  DISLIN,DISK__OUT 
PUTSECTOR JMP D ISLOUT Provided by user 

BSR GETCHAR input a char 

BSR PUTSECTOR write sector 
Application program 
(address of subroutines 
not system dependent) 

vol 10 no 5 june "/986 265 



Table 6. Functions provided by the TRAP #14 handler 
on the EBC 

Function value Function name Function description 

255 - -  Reserved func t ions-  
end of table indicator 

254 - -  Reserved function - -  
used to link tables 

253 LINKIT Append user table to 
TRAP14 table 

252 FIXDAOD Append string to 
buffer 

251 FIXBUF Initialize A5 and A6 
to BUFFER 

250 FIXDATA Initialize A6 to 
BUFFER and append 
string to BUFFER 

249 FIXDCRLF Move CR, LF string to 
buffer 

248 OUTCH Output single 
character to port 1 

247 INCHE Input single character 
from port 1 

246 -- Reserved function 
245 -- Reserved function 
244 CHRPRNT Output single 

character to port 3 
243 OUTPUT Output string to 

port 1 
242 OUTPUT21 Output string to 

port 2 
241 PORTIN1 Input string from 

port 1 
240 PORTIN20 Input string from 

port 2 
239 TAPEOUT Output string to 

port 4 
238 TAPEIN Input string from 

port 4 
237 PRCRLF Output string to 

port 3 
236 HEX2DEC Convert hex values to 

ASCI I-encoded 
decimal 

235 GETHEX Convert ASCII 
character to hex 

234 PUTHEX Convert one  hex digit 
to ASCII 

233 PNT2HX Convert two hex 
digits to ASCII 

232 PNT4HX Convert four hex 
digits to ASCII 

231 PNT6HX Convert six hex digits 
to ASCII 

230 PNT8HX Convert eight hex 
digits to ASCII 

299 START Restart Tutor; perform 
initialization 

228 TUTOR Go to Tutor; print 
prompt 
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227 OUT1 CR 

226 GETNUMA 

225 GETNUMD 

224 PORTIN1N 

223-128 

127-0 

Output string plus CR, 
LF to port 1 
Convert ASCII 
encoded hex to hex 
Convert ASCII 
encoded decimal 
to hex 
Input string from 
Port 1; no automatic 
line feed 
Reserved 
User-defined 
functions 

CONCLUSIONS 

These two papers have looked at the way in which the 
68000 implements exception handling. 

Over the past few years, microprocessors have become 
faster and are able to access much larger memory spaces 
than those available to earlier 8-bit machines. However, 
the improvements in the exception handling mechanisms 
of today's microprocessors are as significant as advances in 
microprocessor performance (ie throughput). Exception 
handling carried out within the framework of the 68000% 
user/supervisor operating modes brings new security 
mechanisms to microcomputers. Modem multiuser, 
multitasking systems require more than mere performance. 
They must have mechanisms which protect one task from 
illegal access by another task. Equally, they require 
mechanisms which protect the system from a wide range 
of 'abuses'. 

The 68000 provides all these facilities. The operating 
system interface is furnished by the trap; protection from 
some forms of abuse is provided by invalid instruction 
exceptions, uninitialized interrupt exceptions etc. 
Hardware exceptions (eg bus error) protect the system 
from faulty hardware. 
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